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1 Introduction 

The prospect of sustainable growth is largely motivated by the notion of “stewardship for 

the future.” In discussing what the present owes the future, Robert Solow (1991) remarks, 

“...what we are obligated to leave behind is a generalized capacity to create well-being, not any 

particular thing or any particular natural resource.” It is the economy’s productive base, as 

represented by the totality of capital in its various forms, that provides the capacity for creating 

well-being now and in the future. Arrow et al. (2004) suggest that concerns for sustainability are 

captured by the sustainability criterion – that intertemporal social welfare not decrease over time 

– and present a mathematical proof that this requires a non-declining value of total capital, 

including natural and human capital. 

The sustainable growth literature provides rules for resource use and investment in the 

context of perfect certainty. For example, Heal (1998, 2001) and Endress et al. (2005) provide 

conditions such that optimal resource use and investment result in sustainable consumption, 

utility, and wealth. In such cases, optimality implies sustainability but not the other way around. 

That is, maximizing intertemporal welfare satisfies the sustainability criterion. There is no need 

to specify a sustainability constraint.1 However, the sustainable growth literature typically begs 

the question of how rules for optimal resource extraction and investment change under 

uncertainty, particularly when stocks of physical and/or natural capital are subject to negative 

shocks. Is optimality now at odds with sustainability? Is sustainable growth even possible?  

The traditional literature on stochastic economic growth (as surveyed e.g. by Gollier 

2001) emphasizes optimal savings in the face of uncertain income. However, this strand of 

                                                
1 In other cases discussed in the same literature, sustaining a positive, non-declining level of consumption is 

impossible, i.e. optimization is futile. 



 

 

literature does not adequately capture how natural disasters may affect physical and ecological 

capital stocks. Recent work on the economics of natural disasters has made significant progress 

in this direction (e.g., Tsur and Zemel 2006, Barro 2006, Noy 2009, Gollier and Weitzman 2010, 

Hallegatte 2012, Hallegate and Ghil 2008, Pindyck and Wang 2013, and Weitzman 2012; an 

earlier contribution is Cropper 1976). Yet, the link between disaster economics and the 

economics of sustainable growth remains incomplete. 

The objective of this paper is to derive insights regarding the implications of disaster risk 

for the prospects of long-run sustainable growth. In the interest of minimizing model complexity 

while maximizing interpretability of results, we begin by deriving optimality conditions for a 

two-period model (Gollier, 2013), adapted for the case of natural disaster. We then show that 

those conditions remain valid in an infinite-horizon continuous-time setting—with adjustments 

to account for continuous compounding—provided that the probability of disaster is exogenously 

and parametrically specified. This result is key to answering the earlier posed question of 

whether or not the generalized sustainability criterion can be satisfied without constraints in a 

world where capital stocks are subject to large and uncertain negative shocks. We find that in 

short of a catastrophe that depresses natural capital below a tipping point, a disaster functions as 

a restart, and the economy can still approach a golden rule steady state if optimal paths are 

followed. 

2 Two-period model: a stepping stone  

A two-period model, constructed and applied to discounting in the presence of 

uncertainty by Gollier (2013) provides a point of departure for our analysis. Utility (U) is a 

function of consumption (C) at time 0 and t, where t is arbitrary. The two periods are not 

adjacent; they are points in time separated by time span t. There is a capital market with interest 



 

 

rate r, and the return to capital is compounded continuously between time 0 and time t. The pure 

rate of time preference is given by ρ. In this expected utility framework, the Ramsey rule is 

(1) rt  = ρ - (1/t)log{EU′(Ct)/U′(C0)} 

where E is the expectation operator. To allow for the possibility of a natural disaster, we 

introduce uncertainty regarding destruction of capital in section 2.1.2  

2.1 Investment smooths consumption in a two-period model with disaster 

risk 

 The Gollier (2013) model extends the Ramsey rule to the case of uncertainty in the 

growth of consumption. We adapt the Gollier two-period model to the case of natural disaster: 

there is a probability P that a natural disaster destroys a fraction D of the capital stock K in 

period t (see the Appendix for a detailed description of the model). Since the uncertain capital 

stock is an input to production, consumption in the second period is state dependent. The 

planner’s objective is to maximize expected utility, subject to feasibility constraints in each of 

the two periods.  

 With comparative static analysis, it can be shown that investment will decrease, remain 

unchanged or increase in response to an increase in the probability P of disaster, depending on 

the value of η, the coefficient of relative risk aversion to intertemporal inequality of consumption 

(see the Appendix). For the commonly considered case of η > 1 (more risk averse), this means 

that risk management entails increasing the capital stock even though said capital is exposed to a 

greater risk. In summary, the two-period model tells us that precautionary investment helps to 

smooth consumption but is unable to address long-run questions about sustainability. 

                                                
2 Uncertainty in the Gollier model regards the growth rate of output and consumption. Of note, Weitzman (2012) 

investigates the Ramsey discounting formula in a stochastic context using the Gollier two-period framework. 



 

 

2.2 Extended Ramsey condition in the two-period model 

 Using results derived in the Appendix and discussed in section 2.1, we construct an 

extended Ramsey condition that turns out to be a key piece in our sustainability puzzle. We 

begin with the classic Ramsey condition in the absence of risk:  

(2) r(t) = ρ + ηg(t) 

where g(t) is the growth rate of consumption at time t. 

 To extend equation (2) for the case of natural disaster that, with probability P, destroys a 

fraction D of capital stock K in period t, we proceed as follows. Substituting equation (A4) from 

the Appendix into equation (1), applying continuous utility discounting with β = e-ρt, using the 

approximation log(x + 1) ≅ x, and recognizing a first period constraint on capital investment, 

leads to the following expression: 

(3) rt  = ρ + (1/t)ηlog{[A(Kt)α]/[A(K0)α - Kt]} - (1/t){P[(1 - D)α(1-η) - 1]} 

The first term on the right hand side of (3) is the “impatience effect” identified by Gollier (2013). 

The second term is the “wealth effect”, and the third term the “precautionary effect.” For 

example, a higher pure rate of time preference increases the threshold level that must be achieved 

and thereby lowers the optimal level of investment. Similarly, a high coefficient of relative risk 

aversion and/or high growth rate of capital reduce optimal investment via the wealth effect. The 

third term has the opposite effect on investment. If the precautionary effect is larger, e.g. due to a 

higher probability of natural disaster, optimal investment is higher. 

3 Continuous-time model: is optimal still  sustainable?  

 In order to integrate the concerns of both sustainable growth and resilience, we need a 

model of capital accumulation (combined with stewardship of ecological resources) in a model 

of intertemporal welfare in the face of disaster. In this section, we develop a continuous-time 



 

 

analog to equation (3) and show that the steady state, if it exists, depends on the underlying 

fundamentals of the economy and satisfies a general criterion for sustainability. 

3.1 Exogenous and parametrically specified continuous probability 

distribution of disaster 

 We motivate the transition to a continuous time model with a continuous probability 

distribution of disaster. Suppose that P is the probability of a one-time disaster of severity D, 

where the time of occurrence is distributed uniformly over the interval [0, τ]. The time line [0, ∞) 

can then be divided into sequential intervals of length τ: [0, τ], (τ, 2τ], … ((N-1)τ, Nτ], and so 

forth. For 1 ≤ n ≤ N, the probability of disaster occurring in some interval ((n-1)τ, nτ] is {P + 

P(1-P) + P(1 - P)2  + … + P(1 -P)(N-1)} = {1 - (1 - P)N}, which approaches 1 as N → ∞. The 

continuous-time analogue to this distribution is obtained by dividing every interval of span τ 

(from time 0 to Nτ) into m smaller subintervals. As m → ∞, the probability that an event occurs 

by time t is [1 - e-Pt]. In other words, we have a probability distribution F(t) = 1 - e-Pt with density 

function f(t) = Pe-Pt. P can be interpreted as a hazard rate, analogous to h(Q(t)) in Tsur and Zemel 

(2006), but constant in our case. 

3.2 Extended Ramsey condition and precautionary investment in continuous 

time 

 With the shift to the continuous time framework, the term (1/t)P in equation (3) needs to 

be replaced by the probability density function f(t) = Pe-Pt, and the risk of disaster becomes 

[Pe-Pt] [(1 - D)α(1-η) - 1]. Note that integrating [Pe-Pt][(1 - D)α(1-η) - 1] from 0 to time T gives 

cumulative precautionary investment at time T of [1 - e-PT][(1 - D)α(1-η) - 1]], where the first 

factor approaches 1 as T → ∞.  The extended Ramsey equation can now be written as 

(4) rt  = ρ + ηg - [Pe-Pt][(1 - D)α(1-η) - 1] 



 

 

          We offer some observations regarding the effect of parameters η and P on precautionary 

investment {- [Pe-Pt][(1 - D)α(1-η) - 1]}: When η  > 1, the product of the two terms in square 

brackets is positive; with the negative sign out front, r is lowered, indicating a higher level of 

capital at time t; that is precautionary investment is positive. For the case η < 1, we have the 

opposite story; precautionary investment is now negative. And for η = 1, there is no 

precautionary investment. These results are consistent with those presented in section 2.1. 

 The situation for P is more nuanced than in the discrete two-period model. Take the usual 

case η > 1. The second term, [(1 - D)α(1-η) - 1], is a constant for fixed parameters α, D, and  η.  

Now suppose hazard rate P increases so that dP > 0. Consider the density function as a function 

of P for a fixed t = s:  f(P, s) = Pe-Ps. The derivative of f with respect to P, f '(P, s) = [1 - Ps]e-Ps, is 

positive when [1 - Ps] > 0 or s < 1/P.  This result implies that an increase in hazard rate P should 

motivate higher precautionary investment earlier, and lower investment later. This makes 

intuitive sense. Plotting the density function f(t) for two hazard rates, P1 < P2, illustrates the 

situation. The density for P2 starts out higher, but drops off more quickly; at some time t = s, the 

two curves cross over; as densities, both functions integrate out to probability 1 over an infinite 

time horizon. 

 So far in this analysis we have assumed 100% capital depreciation represented by δ = 1. 

How might a lower rate of capital depreciation, δ < 1, affect precautionary investment? We show 

in the Appendix that the precautionary investment term in the extended Ramsey equation is 

adjusted by a factor Z which depends inversely on the ratio of the marginal product of capital 

(MPK) to the term (1 - δ): { - [Pe-Pt][(1 - D)α(1-η)(Z) - 1]}. In earlier times t, when capital 

accumulation is low, the ratio MPK/ (1 - δ) is relatively high and the factor Z is close to 1 in 

value. As MPK/ (1 - δ) declines over time, Z increases (to about 1.23 as MPK approaches δ in 



 

 

the example presented in the Appendix); however, this increase is more than offset by the decline 

in weighting by the density function [Pe-Pt] as t increases. We conclude that the factor Z is not 

significant and neglect it in the subsequent analysis. 

3.3 Long run steady state in the absence of risk 

How do we specify the long run steady state of an economy following the optimal path?  

Consider first the Ramsey condition (2) for the case of certainty and no risk as a benchmark for 

comparison with the case of disaster risk. The steady state, if it exists, is characterized by g = 0; 

the growth rate of consumption is zero, and consumption attains the constant level C*. As a 

consequence, equation (2) simplifies to r* = ρ. The steady state discount rate r* satisfies r* = 

F′(K*) - δ. So in the steady state, F′(K*) = (δ + ρ). If we take ρ = 0, neutral weighting of utility 

across time as a pillar of sustainability (Endress et al., 2005), then our steady state result is 

F′(K*) = δ. This is the classic “Golden Rule” of capital accumulation in the context of long run 

sustainability.3  

Assuming that 0 < α < 1, the long run steady state can be specified by solving for K*.4 

For F(K) = AKα, F′(K*) = αA(K*)α-1 = δ , which means that K* = {δ/(αA)}1/(α-1) = {(αA)/(δ)}1/(1-α). 

For the case δ = 1 (100% capital depreciation), K* = (αA)1/(1-α). While K* depends on the 

technology of production as characterized by α (output elasticity of capital) and A (total factor 

productivity), it does not depend on the initial stock of capital K0. We can then solve for the 

golden rule level of steady state consumption, C* = F(K*) - δK*. Its associated utility, U(C*), is 

an important component in the formulation of social wellbeing across time, usually termed 
                                                
3 For ρ > 0, the steady state result is usually called the “Modified Golden Rule.” 

4 Otherwise K* = (αA)1/(1-α) has no solution. When α = 1, F′(K) = A, which in the general case will not equal δ. We 

could, however, take α = (1 - ε) and explore the limit as ε goes to zero. 



 

 

intertemporal welfare. One measure of wellbeing at a particular point in time t (instantaneous 

wellbeing), is the gap between U[C(t)] and U[C*]. Now for t < ∞, {U[C(t)] - U[C*]} < 0. As the 

economy grows and both C(t) and U[C(t)] increase, the gap narrows, becoming less negative.  

A more illuminating extension is the summing up of instantaneous wellbeing of society 

over time, starting at time t, to yield intertemporal welfare, denoted V(t). Since the model is 

formulated in continuous time, the summing up is achieved through the process of integration.  

Accordingly, we can write 

(5) dsCUsCUtV
ts∫

∞

=
−= *]}[)]([{)(  

Since the integrand is negative for 0 ≤ s < ∞, V(t) < 0. This representation is an integral 

transformation, due to Koopmans (1965), that yields a finite value of the integral over an infinite 

time horizon without discounting (i.e., ρ = 0). See Endress et al. (2005) for further discussion of 

this technique and its application to sustainable growth.   

 A goal of economic policy should be to maximize the intertemporal welfare of society 

starting from initial time t = 0, subject to the feasibility constraint of the economy. Letting  

V = V(0), the problem can now be stated as: 

(6) ,*]}[)]([{
0

dsCUsCUMaxMaxV
ts∫

∞

=
−=  subject to 

  ! = ! ! ! − !" ! − ! ! = ! ! ! ! − !" ! − ! !  

Solution of this problem leads directly to the first order efficiency condition, the Ramsey rule, 

equation (2) with ρ = 0.  Note that in maximizing V, we are choosing a path for U[C(s)] that 

makes the integral dsCUsCU
t∫
∞

−
0

*]}[)]([{  the least negative. A key consequence of following 

the optimal path, as guided by the Ramsey rule, is that intertemporal welfare is non-declining 

over time; that is ! ≥ 0. This observation is fully compatible with the result presented in Arrow 



 

 

et al. (2004). The steady state is characterized by ! = 0 in (6) and g = 0 in (2). The economy 

approaches the steady state as t approaches infinity; U[C(t)] approaches U[C*], and V(t) 

approaches zero from below. No ad hoc sustainability constraints are required to achieve 

optimality. In fact, imposing such constraints serves only to reduce intertemporal welfare. 

3.4 Paths of convergence to the steady state with and without disaster risk 

 In this section, we show that the optimal steady state capital stock does not depend on the 

initial capital stock or the probability of disaster. It is tied only to the fundamental parameters of 

the economy, which means that any negative shock to K simply acts as a reset; the long-run 

target remains unchanged. 

3.4.1 Path of convergence without risk of disaster  

 A closed form solution for the path of K(t) from initial time zero to the steady state 

typically depends on approximation techniques, such as the process of log-linearization applied 

to a modified form of the Ramsey condition. The process involves taking logs of key variables 

followed by performing a first order Taylor series expansion around steady state variables. The 

result is an approximate path of convergence of log[K(t)] to the steady state value log[K*]: 

(7) log[K(t)] = [1 - e-σt]log[K*] + [e-σt]log[K0] 

The parameter σ is known as the speed of convergence; its value is determined by the parameters 

of preferences (η, ρ) and production (α, δ, but surprisingly not A, which produces opposite, 

offsetting effects); however, it does not depend on the initial stock of capital, K0. Empirical 

estimates of σ range from 0.015 to 0.03 with σ = 0.02 corresponding to α = 3/4.5  

 A concept related to the transition to the steady state that has direct application to the 

problem of economic resilience and recovery from disaster is the so-called “half-life of 
                                                
5 See Barro and Sala-i-Martin (2004) for a detailed discussion of convergence. 



 

 

convergence” or T1/2. The half-life of convergence is the time interval required to close the gap 

between log[K0] and log[K*] by one half. Algebraic manipulation of equation (7) shows that T1/2 

= [log 2]/σ; for σ = 0.02, T1/2 = 0.693/0.02 = 34.66. So with time measured in years, the half-life 

of convergence is about 35 years; to close the gap again by half is another 35 years, and yet 

again, a third half-life of 35 years. Adding up: 105 years, amounting to several generations, are 

required to close the gap between log[K0] and log[K*] by 1/2 + 1/4 + 1/8 = 7/8 of the way + 1/4 

+ 1/8 = 7/8 of the way. 

3.4.2 Path of convergence for the case of a single-event disaster 

 Suppose that a disaster occurs at time τ1, 0 < τ1 < ∞, destroying fraction D of accumulated 

capital stock K(τ1). Because of precautionary investment, K(τ1) for the case of uncertainty and 

risk, exceeds the level K(τ1) that would apply in the case of certainty and no risk of disaster. 

Capital remaining is (1 - D)K(τ1), which functions as the initial capital stock for the trajectory 

from time τ1 forward. The post-disaster trajectory of capital is characterized as follows: 

(8) log[K(t - τ1)] = [1 - exp[-σ(t-τ1)]log[K*] + exp[-σ(t-τ1)] log[(1 – D)K(τ1)] 

 In spite of disaster occurring at time τ1, the values for K*, σ, and T1/2 remain unchanged 

because they are tied to the fundamental parameters of the economy: steady state capital K* is 

determined by A, α, δ and ρ; speed of convergence σ depends on α, δ, η  and ρ; T1/2 = [log 2]/σ. 

K*, σ, and T1/2  do not depend on initial capital stock nor on the probability of disaster. Equation 

(8) represents a reset and restart of the economy from time of disaster τ1 with [(1 – D)K(τ1)] in 

place of  K0  serving as the “initial” capital stock. 

 With respect to resilience and recovery, we can estimate the time interval T = (t - τ1) 

required to restore the capital stock back to K(τ1) from [(1 - D)K(τ1)]. Substituting log [K(τ1)] on 

the left hand side of (8) and solving for (t - τ1) = T yields T = (1/σ)log{1 + [log(1 - 



 

 

D)]/[log(K(τ1)/K*)]}. For example, with σ = 0.02, (1 - D) = 3/4, and (K(τ′)/K*) = 1/4, T = 9.4 

years. Robust recovery is contingent on the economy’s ability to follow the efficient path 

approximated by equation (8). 

Figure 1 depicts the paths of U[C(t)] and V(t) in the disaster scenario. In the upper graph, 

U[C(t)] rises along the optimal path from t = 0 to t = τ1, at which time a natural disaster occurs.  

The capital stock drops from K(τ1) to (1 - D)K(τ1), resulting in a discontinuous drop in 

consumption, and hence utility of consumption at time τ1. Recovery takes place over the time 

interval T, as computed above. After recovery, U(C) continues the asymptotic approach to 

U(C*). The lower graph shows the trajectory of intertemporal welfare, V(t). It rises at a healthy 

rate, until disaster occurs at time τ1. 

However, since V(t) is an integral, it is continuous (though not differentiable) at time τ1; 

there is no jump drop.6 In fact, if U(C) takes a one-time drop and then rises again during 

recovery, V(t) remains non-decreasing. In the event that U(C) continued to decline for a period 

during the recovery phase, ! would be negative over the same period.7 After recovery, V(t) 

continues the climb to the long run steady state, asymptotically approaching zero from below. 

                                                
6 See e.g. Friedman (1999), section 4.5, theorem 1, page 127. 

7 Arrow et al. (2004) remark on the possibility of periods where ! < 0, but don’t relate that possibility to disaster. 



 

 

 

Figure 1. Trajectories of U(C(t)) and V(t). Disaster occurs at time τ1. Duration of recovery is T. 

3.4.3 Path of convergence for the case of recurrent disasters 

 Now suppose we have recurrent disaster events at times τ1, τ2, τ3, ... τn, and so forth. After 

the nth disaster, the extended Ramsey equation is written  

U(C*) 

t 

U(C(t)) 

τ1 τ1 + T 

0 

0 

V(t) 

t 
τ1 τ1 + T 



 

 

(9) rt  = ρ + ηg - [Pexp(-P(t - τn))][(1 - D)α(1-η) - 1],  

where we assume that the hazard rate P and severity of disaster D remain constant. The trajectory 

of the economy from time τn forward is now approximated by the equation  

(10) log[K(t - τn)] = [1 - exp[-σ(t-τn)]log[K*] + exp[-σ(t-τn)] log[(1 – D)K(τn)], 

which applies until the next disaster event occurs at time t = τ(n+1). Equations (9) and (10) require 

modification by substituting τ(n+1) for τn throughout. These modified equations then apply until 

yet again the next disaster occurs. 

 Even in the case of certainty and no risk of disaster, the economy approaches, but never 

reaches, the steady state. The example in section 3.4.1, using representative parameter values, 

estimates a half-life of convergence to be about 35 years; this represents the time it takes to close 

the gap between log[K0] and log[K*] by ½. Three half-lives, or about 105 years, would be 

required to close the gap 7/8 of the way. We keep climbing the hill, but never quite get to the top. 

 The climb is much more challenging with the prospect of disaster recurring a countably 

infinite number of times. This situation might be characterized as a “Stochastic Sisyphus” 

problem.8 Each disaster, occurring at some random time, is like the boulder falling down the hill, 

but not all the way. So in this scenario, Sisyphus climbs higher and higher, but forever suffers 

partial resets and restarts, never reaching the top. Nonetheless, Sisyphus does get closer and 

closer: eternally proceeding two miles forward and one mile back, but with the goal of attaining 

golden rule utility U(C*) at the top of the hill “at the end of time.” For this economy, burdened 

as it is by recurrent disasters, and even for Sisyphus, golden rule utility U(C*), which applies to 

the case of neutral weighting of utility across time (ρ = 0), has special significance. As shown in 

                                                
8 In Greek mythology, Sisyphus’ punishment for excessive avarice and deceit was to roll a boulder up a hill, only to 

watch it roll back down, and to repeat this action indefinitely. 



 

 

Endress et al. (2005) and based on Weitzman (1976), U(C*) represents constant net national 

product in utility units for all time periods along the optimum trajectory. As figure 1 suggests, 

the optimum trajectory of utility may be comprised of piecewise continuous segments, with 

points of discontinuity and downward resets at times of disaster τ1, τ2, τ3, ... τn, ....; such is the 

eternal fate of Sisyphus. 

4 Modeling natural resources as a separate sector  

Additional insights are generated by incorporating a separate natural resource sector into 

the model, rather than just including natural resources in total capital K. A general approach is to 

consider a renewable natural resource that provides ecological services in production as well as 

amenity value in utility.  

4.1 Separate natural resources sector: preliminaries 

At time t, a renewable resource is harvested at rate H(t) to serve as a factor of production 

along with capital: F(K,H). Marginal products are written as FK and FH. The remaining stock X at 

each point in time contributes to amenity value so that utility is a function of both consumption C 

and natural resource stock X: U(C,X). Marginal utilities are written as UC and UX. 

Renewal, or regeneration, of the resource is specified by a growth function G(X) that 

depends on X, the stock level. We follow the renewable resource literature (e.g., Clark, 1990) by 

basing G(X) on a logistic type growth formula, modified by a factor representing the so-called 

Allee effect: growth becomes severely depressed at low densities or stock levels, leading to 

extinction.9 

                                                
9 The effect is named after American zoologist, Warden Allee. See discussion in Sheffer (2009). Clark (1990) refers 

to this effect as “critical depensation.” 



 

 

(11) G(X) = πX[1 - X/(Xmax)][(X - Xcr)/(Xmax)] 

where π is the intrinsic growth rate of the resource, Xmax is the maximum stock level, or 

biological carrying capacity of the natural resource system, and Xcr is the critical stock level, at 

or below which the growth rate turns negative and the resource stock X approaches zero (i.e., 

extinction). See Figure 2 for a graphical depiction.  

 

Figure 2. Renewable Resource Growth Function: G(X) = πX[1 - X/Xmax][(X - Xcr)/Xmax] 

 

The time rate of change in the resource stock level is governed by two key factors, the 

regeneration rate G(X), and the harvest rate H. 

(12) ! = ! ! − ! 

The natural resource system approaches a long run steady state as time t approaches 

infinity if Ẋ approaches zero so that G(X) = H. We designate the steady state stock level as X*. 

G(X) 

X Xcr Xmax 

π1 > π2 

π1 

π2 



 

 

Unit harvesting cost, Φ(X) is a function of the stock level and is assumed to be non-decreasing as 

the stock X is drawn down: Φ′(X) ≤ 0.  

4.2 Extended Ramsey and Hotelling rules 

The planner’s problem now becomes 

(13) ∫
∞

=

−=
0

*]}*,[)](),([{
s

dsXCusXsCUMaxMaxV , subject to 

! = ! !,! − !" −Φ ! ! − !  

! = ! ! − !  

where initial stock level X0 satisfies Xcr < X0 ≤ Xmax. As in section 3.1, the probability of natural 

disaster has density function Pe-Pt. Optimization is guided by two first order conditions. 

(14) (i) An extended Ramsey rule with ρ = 0, as before: 

r(t) = ηg - [Pe-Pt][(1 - D)α(1-η) - 1] 

 (ii) An extended, renewable resource version of the Hotelling rule (Hotelling, 1931): 
  [FH - Φ(X)] = [1/(FK – δ)]{ḞH + [FH - Φ(X)]G′(X) - Φ′(X)G(X) + UX/UC} 

The effect of a natural disaster that damages a portion DX of the resource stock is discussed in 

section 4.3. For the golden rule steady state, these conditions reduce to 

(15) (i′) r = FK - δ = 0, and 

 (ii′) FH = Φ(X*) + {Φ′(X*)G(X*) - [UX]/[UC]}/[G′(X*)] 

See Endress et al. (2014) for discussion and derivation of the extended Hotelling rule for a 

renewable resource in a model with production and amenity value. 

4.3 Impact of natural disaster on the renewable resource sector 

In the no-disaster scenario, capital accumulation and natural resource harvesting take 

their optimal paths when guided by the Ramsey and Hotelling rules, approaching steady state 



 

 

stock levels K* and X*. But suppose that a natural disaster occurs at time τ1. We consider several 

possibilities involving direct impacts on the natural resource system. 

4.3.1 Disaster does not push the system below the critical value tipping point 

Suppose that a portion DX of the resource stock is damaged at time τ1, leaving 

(1 - DX)X(τ1) > Xcr remaining. Utility U(C, X) takes a discontinuous drop at time τ1 and then 

increases, much like the upper graph of Figure 1. Intertemporal welfare, V(t), stays continuous 

and non-decreasing as in Figure 1, but is not differentiable at τ1. In the long run, as time t 

approaches infinity, the system approaches the steady state levels K* and X*, which have not 

been affected by the natural disaster.  

4.3.2 Disaster pushes the system below the critical value tipping point 

Now suppose that a portion DX of the resource stock is damaged at time τ1, leaving 

(1 - DX)X(τ1) < Xcr remaining. In this case, the natural resource system collapses toward 

extinction; if the natural resource is an essential factor of production, and no substitutes exist, the 

economy fails and sustainability is not possible. 

4.3.3 Disaster induces a reduction in the intrinsic growth rate 

Another possibility is that the intrinsic growth rate, rather than the capital stock itself, is 

affected by the disaster. Figure 2, depicts two graphs for G(X) with π1 > π2. The effect of a 

reduced intrinsic growth rate on the steady state stock X* and harvest rate H* is not immediately 

apparent; the signs of comparative statics d[X*]/dπ and d[H*]/dπ are heavily dependent on the 

specific functional forms for F, Φ, G, and U, as the extended Hotelling rule suggests. Farmer and 

Bednar-Friedl (2010) construct a case for which d[X*]/dπ > 0 and d[H*]/dπ > 0. In this case, a 

negative shock to the intrinsic growth rate, engendered by the natural disaster, lowers steady 



 

 

state values of the resource stock and the harvest rate. The effect would be to lower the golden 

rule level of utility U(C*, X*). 

5 Conclusions 

 In this preliminary integration of disaster economics and sustainability theory, we reach 

the following conclusions: In the long run, optimal paths of consumption and investment, 

whatever the source of uncertainty, lead to steady states defined by fundamentals of the 

economy: the production function, the utility function, and the natural resource growth function. 

In particular, neither the long run steady state, nor the speed of convergence to the steady state 

depends on produced capital or natural resource stocks in the initial period. 

Short of a catastrophe that depresses natural capital below the tipping point,10 a natural 

disaster functions as a restart, with new levels of capital starting from the time of disaster. In the 

case of recurrent, non-catastrophic disasters, the result is a series of restarts. Despite destruction 

of capital in the short run, economic recovery can be achieved in the medium run, and the 

economy can approach a golden rule steady state if optimal paths are followed. These 

possibilities require precautionary investment in productive and natural capital. Equally 

important for the longer run, they imply the avoidance of additional objectives such as 

economic-ecological self-sufficiency. 

The golden rule, optimal steady state is also consistent with sustainability. In particular, 

the Arrow et al. (2004) sustainability criterion that intertemporal welfare not decline is satisfied 

by the optimal program. A sustainability constraint requiring consumption, utility, or 

intertemporal welfare to be non-declining would be redundant except perhaps in the extreme 

                                                
10 For an analysis of optimal investment in the face of a tipping point, see e.g. van der Ploeg and de Zeeuw (2016). 



 

 

case of potential catastrophic, ecological collapse. In this case, optimality may be at odds with a 

sustainability constraint. 

Both the discrete two-period model and the extended-Ramsey model deliver policy 

implications relating investment to probability of disaster. In the simple two-period model with 

capital at risk of partial destruction, an increase in the probability of disaster increases optimal 

investment in capital at risk for the “typical” case that the coefficient of relative risk aversion 

(preference for smoothing) is greater than one and decreases investment for η < 1. For the 

intermediate case of η = 1, the preference for consumption smoothing exactly offsets the 

tendency to decrease exposure of capital at risk such that optimal investment is invariant to the 

probability of disaster. For the continuous time model, the situation is more nuanced. In the 

typical case with η > 1, an increase in hazard rate P shifts the time path of optimal precautionary 

investment toward the present: higher precautionary investment earlier, and lower investment 

later.  

 We close with some suggested extensions to the model as opportunities for future 

research. One extension would be to include capital adjustment costs and capital hardening into 

these models. Relatedly, production and utility could be modeled more generally by including 

labor as arguments in the production and utility functions. Such a model would allow one to 

investigate how labor affects the optimal allocation between production and investment, as well 

as determine how this allocation varies with changes to the output elasticity of labor and the 

weight assigned to labor disutility.  

A key pillar of sustainable growth is adopting a complex systems approach to modeling 

and analysis, integrating natural resource systems, the environment, and the economy. Much 

interdisciplinary research, both theoretical and empirical, remains to be done, and this is where 



 

 

the emerging field of sustainability science (Clark, 2007) has the potential to make a substantial 

contribution. For example, more sophisticated analysis of substitutability among different 

varieties of capital, especially in coupled systems, appears possible. Notions of network effects, 

emergence, spontaneous order, non-linearities, critical transitions, bifurcations, regime shifts, 

tipping points, and chaos in adaptive, complex systems, though regarded as “faddish” in some 

circles, are now being incorporated into advanced models. Scheffer (2009) provides an 

accessible overview of the issues and challenges involved.   

 In the big picture, research in this area will likely involve continued development and 

refinement of models linking sustainability theory, uncertainty, and the economics of natural 

disaster – e.g. including technological change, a central interest of endogenous growth theory –

and disaster shocks to productivity, the province of business cycle theory. Further research in the 

realm of stochastic analysis is also required to construct better estimates of P and D. Though not 

considered a feature of the present two-period model, this line of research remains essential to 

inform policy for disaster risk management. 
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Appendix 

I Two-period model preliminaries 

 In our simple economy, production takes the form F(K) = A(K)α, with 0 < α ≤ 1. The 

letter A designates productivity or the state of technology in production and α is the output 

elasticity of capital. We do not address technological change or negative productivity shocks, 

and labor is held constant. Investment at time 0 can be specified generally as I = Kt - (1 - δ)K0, 

where 0 ≤ δ ≤ 1 is the rate of capital depreciation each period.11  For computational tractability in 

the two-period model, we assume 100% capital depreciation by taking δ = 1 (e.g., as in Benassy, 

2011; Romer, 2012).12 Accordingly, Kt is period 0 investment in productive capital. The amount 

of capital that actually remains in the second period, however, is not necessarily equal to Kt. 

There is a probability P, that a natural disaster destroys a fraction (D) of the capital stock in 

period t. In other words, there are two possible end states: Kt,1 = (1 - D)Kt with probability P and 

Kt,2 = Kt with probability (1 - P). 

 Since the uncertain capital stock is an input to production, period-t consumption is state 

dependent. Following the notation used for capital, Ct,1 denotes period t consumption in the 

                                                
11 We assume that consumption goods and capital goods are instantaneously and costlessly convertible. Examples 

(“stories”) offered to justify this conventional convenience include rice (Gollier, 2013), corn (Acemoglu, 2008), and 

cattle (“breed ‘em or eat ‘em”) economies. Alternatively, Pindyck and Wang (2013) combine installation/adjustment 

costs with Brownian motion models of capital diffusion and shocks. A more classic approach goes back to vintage 

putty-clay models of capital (Wan, 1971). 

12 In section 3, we move to continuous time and reintroduce depreciation more generally with 0 ≤ δ ≤ 1. 



 

 

disaster scenario, while Ct,2 is consumption in the absence of disaster. The general specification 

for utility is U(C) = [C(1-η)]/(1 - η).  The parameter η, with 0 ≤ η, is the absolute value of the 

consumption elasticity of marginal utility (i.e. C[U″(C)]/[U′(C)] = -η) and measures the 

preference for consumption smoothing. The parameter η also serves as the coefficient of relative 

risk aversion (to intertemporal inequality of consumption) and is positive for concave utility 

functions (U″(C) < 0). The case η = 0 corresponds to risk neutrality, and the case η = 1 is 

equivalent to the functional form U(C) = logC.13 

 Expected utility over the two periods, assuming temporal separability, is given by  

V = U(C0) + βE[U(Ct)], where β = e-ρt is the discount factor and E[U(Ct)] = P[U(Ct,1)] + (1 – 

P)[U(Ct,2)]. Note, that unless agents are risk neutral, E[U(Ct)] ≠ U[E(Ct)]. The planner’s 

objective is to maximize expected utility, subject to feasibility constraints in each of the two 

periods. Assuming that agents consume all of their total output in the second period and leave no 

terminal capital stock, the optimization problem can be stated as follows:  

(A1) Max V = U(C0) + βE[U(Ct)], subject to 

  C0 = F(K0) - Kt = A(K0)α - Kt  

  Ct,1 = F(Kt,1) = F((1 - D)Kt)= A[(1 - D)Kt]α 

  Ct,2 = F(Kt,2) = F(Kt) = A(Kt)α 

Using the method of substitution, we maximize V over Kt:14 

(A2) Max V, V = {U(A(K0)α - Kt) + β[PU(A[(1 - D)Kt]α) + (1 - P)U(A(Kt)α)]} 

The first order condition for equation (A2) is 

(A3) ∂V/∂Kt = -U′(A(K0)α - Kt) + β{P[αA(1 - D)α(Kt)α-1]U′(A[(1 - D)Kt]α)  

+ (1 - P)[αA(Kt)α-1]U′(A(Kt)α)} = 0 
                                                
13 For U(C) = logC, U′(C) = C-1 and U″(C) = -C-2, which together imply that η = 1. 

14 This method is equivalent to setting up a Lagrangian, but is simpler in this situation. 



 

 

For the functional form U(C) = [C(1-η)]/(1 - η), the first order condition for expected utility 

maximization becomes 

(A4) (A(K0)α - Kt)-η = βα(A)1-η(Kt)α(1-η)-1{P[(1 - D)α(1-η) - 1] + 1}, or 

{[A(K0)α - Kt]-η}/β{{[A(Kt)α]-η}{P[(1 - D)α(1-η) - 1] + 1}} = [αA(Kt)α-1] 

This is a marginal rate of substitution (MRS) = marginal rate of transformation (MRT) condition 

in the expected utility framework. The left hand side is Uʹ(C0)/βE[Uʹ(Ct)], while the right hand 

side [αA(Kt)α-1] = MRT = -d(Ct)/d(C0), which can be derived from the feasibility constraints. 

Note that equation (A4) is an ex ante formulation to guide investment. The ex post expression for 

MRT is more complicated and must be derived from the production possibility frontier for U(C0) 

and EU(Ct). 

II Two-period model comparative statics 

 We consider the effect of an increase in probability of disaster, P, on optimum investment 

in productive capital, Kt.  That is, we derive and attempt to sign the comparative static d(Kt)/dP. 

First, we rewrite the first order condition (A4) as 

(A5) {[A(K0)α - Kt]-η}/β{α(A)1-η(Kt)α(1-η)-1} = {P[(1 - D)α(1-η) - 1] + 1} 

Taking natural logs of both sides of equation (A5) and using the approximation log(x + 1) ≅ x on 

the right hand side yields 

(A6) -ηlog[A(K0)α - Kt] - log[βα] - (1- η)log[A] - [α(1- η) - 1]log(Kt) 

≅ P[(1 - D)α(1-η) - 1] 

Now we totally differentiate with respect to K2 and P. After algebraic manipulation, this yields 

(A7) {η/[A(K0)α - Kt] - [α(1 - η) - 1]/(Kt)}d(Kt)  ≅ [(1 - D)α(1-η) - 1]dP      



 

 

Observe that the expression in curly brackets preceding the differential d(Kt) on the left hand side 

of equation (A7) is strictly positive for α ≤ 1 and any value of η. For the typical case of η > 1,15 it 

must be that d(Kt)/dP > 0, since [(1 - D)α(1-η) - 1] > 0. An increase in the probability of disaster 

induces greater investment in productive capital to support greater consumption in period t. In 

the case of η = 1, as considered e.g. by Stern (2007) and Nordhaus (2008), [(1 - D)α(1-η) - 1] = 0 

such that d(Kt)/dP = 0. That is the preference for smoothing is just enough to exactly offset the 

avoidance of exposing capital to possible damage. For η < 1, [(1 - D)α(1-η) - 1] < 0, which means 

that d(Kt)/dP < 0. A higher probability of disaster induces less investment in capital to allow for 

greater consumption today. In summary, investment will decrease, remain unchanged or increase 

in response to an increase in the probability of disaster, depending on whether η is less than, 

equal to, or greater than 1.  

III The effect of capital depreciation on precautionary investment 

 The extended Ramsey condition presented in section 2.2 was derived for the case of 

100% capital depreciation (δ = 1):  rt  = ρ + (1/t)ηlog{[A(Kt)α]/[A(K0)α - Kt]} - (1/t){P[(1 - D)α(1-η) 

- 1]}. How would a lower rate of capital depreciation, (δ < 1), affect precautionary investment?  

Using several approximations, we estimate that for the case 1 < η, a δ less than 1 tends to raise 

the level of precautionary investment at each time t; more capital is at risk.  However, we 

conclude that the effect is negligible, especially in the continuous time model.  

Expected utility across the two periods is V = [U(C0) + βEU(Ct)] and E[U(Ct)] = 

P[U(Ct,1)] + (1 - P)[U(Ct,2)].  The functional forms are F(K) = A(K)α, with  0 < α ≤ 1 and U(C) = 

[C(1-η)]/(1 - η), where we assume 0 ≤ η. 

                                                
15 Arrow (1999) and Dasgupta (2001) separately opine that η is 1.5. Dasgupta (2008) later argues that η should be 

between 2 and 4. Gollier (2013) advocates and Nordhaus (2008) and Weitzman (2007) consider the case of η = 2.  



 

 

 The planner’s problem is 

(A8) Max V, subject to: 

C0 = F(K0) - Kt + (1 - δ)K0 = A(K0)α - Kt + (1 - δ)K0 

 Ct,1 = F(Kt,1) + (1 - δ)(1 - D)Kt  = A[(1 - D)Kt]α + (1 - δ)(1 - D)Kt 

Ct,2 = F(Kt,2) + (1 - δ)Kt = A(Kt)α + (1 - δ)Kt 

Maximizing over Kt yields the first order condition, 

(A9) (A(K0)α - Kt + (1 - δ)K0)-η = βP{{A[(1 - D)Kt]α + (1 - δ)(1 - D)Kt}-η{αA(1 - D)α(Kt)α-1  

+ (1 - δ)(1 - D)}} +  β(1 - P){{A(Kt)α + (1 - δ)Kt}-η{αA(Kt)α-1 + (1 - δ)}}.             

 

With extensive algebraic manipulation, the first order condition can be rearranged as  

(A10) {A(K0)α - Kt + (1 - δ)K0}-η/ β{A(Kt)α + (1 - δ)Kt}-η 

                       = {P[(1 - D)α(1-η)(Z) - 1] + 1}{αA(Kt)α-1 + (1 - δ)}, where 

 
(A11) Z = {{A(Kt)α + (1 - D)1-α(1 - δ)Kt}/{A(Kt)α + (1 - δ)Kt}}-η 

*{{αA(Kt)α-1 + (1 - D)1-α(1 - δ)}/{αA(Kt)α-1 + (1 - δ)}} 

= {{αA(Kt)α-1 + α(1 - D)1-α(1 - δ)}/{αA(Kt)α-1 + α(1 - δ)}}-η 

*{{αA(Kt)α-1 + (1 - D)1-α(1 - δ)}/{αA(Kt)α-1 + (1 - δ)}} 

Then assuming that α less than, but close to 1 in value,  
 
(A12) Z  ≅ {{αA(Kt)α-1 + α(1 - D)1-α(1 - δ)}/{αA(Kt)α-1 + α(1 - δ)}}1-η 
 

= {{MPKt  + α(1 - D)1-α(1 - δ)}/{MPKt  + α(1 - δ)}}1-η 
 
Now let W = {MPKt  + α(1 - D)1-α(1 - δ)}/{MPKt  + α(1 - δ)}.  For α < 1, we observe that  

(1 - D)1-α  < 1 and so W < 1.   Accordingly, for 1 < η, Z = {W}1-η > 1.  When η < 1,  

Z = {W}1-η < 1.   And when η =1, Z = 1.  



 

 

 Finally, we consider the magnitude of the factor Z and its effect on precautionary 

investment as the economy evolves and productive capital is accumulated. In the early stages of 

capital accumulation, the marginal product of capital is large: MPKt dominates α(1 - δ). Hence, 

W and Z are close to 1, that the effect of Z on precautionary investment is small. As the economy 

grows, even in the face of natural disaster, the marginal product of capital declines and MPKt no 

longer dominates in the expression for W. In fact, as the economy approaches the steady state, 

MPKt approaches δ, and W approaches {δ + α(1 - D)1-α(1 - δ)}/{δ + α(1 - δ)}.   

 For illustration, we apply simple parameter values: α = 3/4, δ = 1/4, η = 2, and D = 1/4. 

These values yield W = 0.8125 and Z = 1/ W = 1.2308. While this appears to represent a large 

effect, it is significantly offset by the conditional probability density f(t) = Pe-Pt.  In continuous 

time, precautionary investment, adjusted for a rate of capital depreciation 0 ≤ δ < 1, can be 

expressed as - {Pe-Pt[(1 - D)α(1-η)(Z) - 1]}.  For 1 < η,  the factor Z rises as time t increases, but 

density function weighting declines rapidly.  Accordingly, we neglect the effect on precautionary 

investment of a capital depreciation rate less than 100%.  

 


