1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

Economic Currents

Keep up to date with the latest UHERO news.

Net Metering Agreements in Hawaii

In Hawaii, like most U.S. states, households installing rooftop solar photovoltaic (PV) systems receive special pricing under net-metering agreements. These agreements allow households with rooftop solar to buy and sell electricity at the retail rate, effectively using the larger grid to store surplus generation from their panels during sunny times and use it when 
the sun isn’t shining. If a household generates more electricity than it consumes over the course of a
 month, it obtains a credit that rolls over for use in future months. Net generation supplied to the grid in excess of that consumed over the course of a full year is forfeited to the utility. Net metering agreements often include 
a monthly fee to support billing, transmission and operation of the grid.

A growing concern is that the utility has many costs besides the fuel used in electricity generation, and most of these “fixed costs” are lumped in with per- kilowatt hour (kWh) charges. As a result, under current net metering agreements, when a solar customer provides their own power, they don’t pay the fixed- cost component for each kWh they produce. Under 
a revenue-decoupling rule, those costs are shifted to households and businesses without rooftop solar. As less power is sold in Hawaii, fixed costs per kWh are rising fast. Most of the decrease in power sales is due to gains in efficiency, but some of it is due to installations of solar PV. Residential customers now pay roughly $0.17/kWh for fixed costs. After the drop in oil prices earlier this year, well over half the utility’s revenue from residential customers goes toward fixed costs.

 

The graph shows the average residential electricity price from 2000 to the present, and breaks out the generation component from the total (Adjusted ECAF). The difference between price and the Adjusted ECAF (Gap) accounts for all non-fuel or fixed costs.


A longer-term concern, particularly in Hawaii with its high electricity rates, is that an inefficient pricing system could encourage many households and businesses to install stand-alone systems, unplug from the grid, and further raise costs for everyone else.

In a new report UHERO's Energy Policy & Planning Group summarizes the benefits and challenges with distributed solar and sketch out a set of long-term solutions based on marginal-cost pricing as the primary platform. Marginal cost is the incremental 
cost of power production—the cost of generating one more kWh. This cost can vary a lot depending on total demand and the amount of renewable power, among other things, so ideal prices would vary over the course of each day, week, season and year. This is likely to become especially pronounced as the variable supply from renewable sources becomes more prominent.

- Makena Coffman and Michael Roberts

UHERO brief

 


Understanding the Links Between Local Ecological Knowledge, Ecosystem Services, and Resilience

UHERO’s Project Environment has received funding from the National Science Foundation to participate in an interdisciplinary, international project that spans the natural and social sciences as well as the terrestrial and marine spheres. UHERO is partnering with scientists, resource managers, cultural practitioners and private landowners in Hawaii and Fiji. The project has two distinct parts; the first examines the relationship between local ecological knowledge and social, economic, and ecological outcomes across twenty rural villages in Fiji. The second part of the project explores the effects of different management and climate change scenarios on ecosystem services and indicators of resilience in three Pacific island watersheds.

For Part 1 of the project, we will focus on twenty rural coastal communities across four districts in Fiji. The team will collect household and village-level data within each of the four districts on ecological knowledge, customary skills and intergenerational knowledge. This will be matched to new and existing data collected from nearby forests and reefs. The goal is to develop an index of local ecological knowledge, as well as an index of social-ecological resilience, and examine relationships between these new indices and other ecological, social and economic outcomes. Of particular interest is the influence of local ecological knowledge on our indicators of resilience.



In Part 2 we will conduct three in-depth case studies at the watershed level, focused on quantifying ecological, cultural, and economic values of various land/ocean uses and covers, and their implications for resilience to climate change. The three watersheds were chosen where collaborators have long-term studies to leverage strong existing relationships with landowners, resource managers and users. The watersheds include Kaupulehu on the leeward coast of Hawaii Island, Haena on the north shore of Kauai, and Kubulau on southwestern Vanua Levu.

In each watershed we will collect new terrestrial data on vegetative composition, canopy cover, and indicators of habitat connectivity. Marine ecological surveys will include reef fish assemblages, benthic cover, species composition, biomass, and trophic structure. Ecosystem and cultural services for land and ocean uses will be calculated based on existing data, ecological characteristics, participatory mapping, and interviews.

To understand what combination of land-use practices best enhance social-ecological resilience under different climate change scenarios, we will evaluate the levels and resilience of ecosystem services under multiple future scenarios of climate change and management. These scenarios will represent a range of likely future climates crossed with a range of possible management decisions for each of the three watersheds. After developing an understanding of the ecological, cultural, and economic benefits of each of the management scenarios, we will then assess the costs of various management regimes under different climate change scenarios. The team can then identify a series of “optimum” scenarios – those that appear to maximize resilience indicators and emphasize the cultural, economic and ecological values identified to be of interest to the community members, land managers, and other stakeholders.

Our dual focus on Hawaii and Fiji provides a spectrum of cultural values and land and ocean uses, from functional agroforestry and traditional subsistence fishing in Fiji, to systematic habitat conservation and restoration in Hawaii. As a result, we can capture a wide spectrum of land management paradigms and their potential outcomes under different climate change scenarios, and our results can inform decision making elsewhere in Hawaii, in the Pacific, and throughout coastal areas more broadly.

-Kim Burnett and Cheryl Geslani


How Do We Measure Social-Ecological Resilience?

Two UHERO graduate researchers, Alex Frost and Cheryl Scarton, attended a field course about social-ecological resilience of island systems in Nadave, Fiji. Participants of the field course were students and environmental practitioners from places throughout the Pacifc like Fiji, Vanuatu, Micronesia and the Solomon Islands.

On day three of the field course, the group took an early morning boat ride to Viwa, an island community of 30 households that is largely food and water self-sufficient. The home stay experience immersed participants in a traditional village lifestyle to apply terrestrial and marine survey methodologies learned from previous days.

Based on western standards and traditional economic measure like income, labor, and production, Viwa would be considered impoverished. The residents’ primary income is through selling excess fish and crops at the market and organization of a home stay immersion program. The island has intermittent power at night from a diesel generator, water comes from a thoughtfully engineered catchment system, and the intermittent power limits access to television and Internet.

From a lens that focuses on social and natural capital versus human and financial capital, Viwa is ecologically and socially wealthy. There is strong community cohesion - every Monday is a rotating social work day, where residents take the time to help one family plant, weed or harvest. Everybody shares excess harvest and people have time for leisure and storytelling. They are always joking, laughing and singing. The knowledge of agroforestry and management of fisheries is passed down through observation and application between generations that do not harm the health of the soil and encourages biodiversity, both are key indicators of sustainability.

How resilient is Viwa island? The common definition of resilience is “the capacity of a system to absorb disturbances or shocks and adapt accordingly while still retaining the same function and structure (McClanahan et al. 2012).” Economically speaking, global financial collapse will probably not affect Viwa at all, but the increasing demand of marine resources from Asia is pressuring people to over harvest. Ecologically, it seems the biggest challenge is invasive species, but heterogeneity of the agroforestry system minimizes the spread of pests and disease, compared to monoculture agriculture. Additionally, they have social mechanisms in place to prepare for extreme events like hurricanes. The island is especially vulnerable to sea level rise, coral bleaching, and shifts in weather patterns (such as a long drought). The village residents are working to develop an extensive water infrastructure system in the future to connect water pipes with an adjacent island. Still, the village faces many social challenges. Younger generations are adapting to the expectations of the market economy by working off island, which leads to a loss of traditional ecological knowledge. Concurrently the growing island population requires further clearing of the land for more housing.

 Overall, the week-long intensive field course brought together faculty, students, and experts to disseminate and learn various methods and tools to measure social-ecological resilience. The forum encouraged network building between the University of Hawai’i and University of South Pacific. The variety of perspectives helped increase participant capacity to challenge existing mental models and assumptions. The experience inspired students to develop future interdisciplinary research on island resilience and identify opportunities to mitigate complex challenges that face Pacific nations, like the impacts of climate change.

- Alex Frost and Kim Burnett


Page: 1 | 2