1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

Products: Sustainability

Keep up to date with the latest UHERO products.

Ordering Extraction from Multiple Aquifers

Optimal groundwater extraction satisfies the condition that the marginal benefits of water consumption equal the full marginal cost of extraction in each period, including the opportunity cost of future benefits foregone. But how should this well-known condition be generalized when there are multiple aquifers available? We provide an extension of the “Pearce equation” to guide the optimal ordering of resource extraction and an illustrative application wherein it is optimal to extract from the “leakiest” aquifer first, letting another aquifer increase in volume. This generalized least cost-first principle contrasts strongly with the sustainable yield approach. By including spatial dimensions, the model provides the marginal valuations of water at each time and place, such that full marginal cost pricing can incentivize users to implement the efficient program. While an untrammeled water market would fail to provide the optimal solution, regulators can facilitate efficient water trading by setting appropriate exchange rates.


Market, Welfare And Land-Use Implications of Lignocellulosic Bioethanol In Hawaii

This article examines land-use, market and welfare implications of lignocellulosic bioethanol production in Hawaiʻi to satisfy 10% and 20% of the State’s gasoline demand in line with the State’s ethanol blending mandate and Alternative Fuels Standard (AFS). A static computable general equilibrium (CGE) model is used to evaluate four alternative support mechanisms for bioethanol. Namely: i) a federal blending tax credit, ii) a long-term purchase contract, iii) a state production subsidy financed by a lump-sum tax and iv) a state production subsidy financed by an ad valorem gasoline tax. We find that because Hawaii-produced bioethanol is relatively costly, all scenarios are welfare reducing for Hawaii residents: estimated between -0.14% and -0.32%. Unsurprisingly, Hawaii’s economy and its residents fair best under the federal blending tax credit scenario, with a positive impact to gross state product of $49 million. Otherwise, impacts to gross state product are negative (up to -$63 million). We additionally find that Hawaii based bioethanol is not likely to offer substantial greenhouse gas emissions savings in comparison to imported biofuel, and as such the policy cost per tonne of emissions displaced ranges between $130 to $2,100/tonne of CO2e. The policies serve to increase the value of agricultural lands, where we estimate that the value of pasture land could increase as much as 150% in the 20% AFS scenario.


How Have Catch Shares Been Allocated?

 A unique database was created that describes the methods used to allocate shares in nearly every major catch share fishery in the world. Approximately 54% of the major catch share fisheries in the world allocated the Total Allowable Catch (TAC) solely on the basis of historical catch records, 3% used auctions, and 6% used equal sharing rules. The remaining 37% used a combination of methods, including vessel-based rules. These results confirm the widely-held belief that nearly all catch share programs have “grandfathered” private access to fishery resources: 91% of the fisheries in the database allocated some fraction of the TAC on the basis of historical catch. This publicly available database should be a useful reference tool for policymakers, academics, and others interested in catch shares management in Hawai‘i and across the globe.

To suggest edits or additions to the database, please email lynham@hawaii.edu.

Working PaperDATA FILE (XLSX)

Economic Impacts of Inter-Island Energy in Hawaii

This study assesses the economic and greenhouse gas emissions impacts of a proposed 400MW wind farm in Hawaii. Due to its island setting, this project is a hybrid between an onshore and offshore wind development. The turbines are planned for the island(s) of Lanai and, potentially, Molokai. The project includes building an undersea cable to bring the power to the population center of Oahu. It is motivated by 1) Hawaii’s high electricity rates, which are nearly three times the national average, and 2) its Renewable Portfolio Standard mandating that 40% of electricity sales be met through renewable sources by the year 2030.

We use an economy-wide computable general equilibrium model of Hawaii’s economy coupled with a detailed dynamic optimization model for the electric sector. We find that the 400MW wind project competes with imported biofuel as a least-cost means of meeting the RPS mandate. As such, the wind project serves as a “hedge” against potentially rising and volatile fuel prices, including biofuel. Though its net positive macroeconomic impacts are small, the estimated reduction by 9 million metric tons of CO2 emissions makes the project a cost-effective approach to GHG reduction. Moreover, variability in imported fuel costs are found to be a much more dominant factor in determining cost-effectiveness than potential cost overruns in the wind project’s construction


Please contact Makena Coffman at makenaka@hawaii.edu for the full study.


Potential Benefits, Impacts, and Public Opinion of Seawater Air Conditioning in Waikïkï

This report provides a summary of an investigation by the University of Hawai‘i Sea Grant College Program into the viability and effectiveness of installing a seawater air conditioning district cooling system in Waikīkī. Seawater air conditioning (SWAC) harnesses the cooling properties of cold seawater to provide cool air for air conditioning purposes. In doing so, SWAC reduces the amount of electricity needed for air conditioning. SWAC is particularly relevant to Hawai‘i for two reasons: first, the proximity of deep, cold, ocean water to areas of high population make Hawai‘i an obvious location for implementing the technology; and secondly, with approximately 90% of its electricity generated from fossil fuels, Hawai‘i is the most fossil fuel dependent state in the nation. Unlike the rest of the U.S., where coal, natural gas, and nuclear power are called upon to meet a substantial proportion of the electricity demand, Hawai‘i relies heavily on residual fuel oil (the by-product of refining crude oil for jet fuel, gasoline, and other distillates). As a result, Hawai‘i has very high electricity prices compared to the rest of the country. SWAC has the potential to both cut the cost of air conditioning and reduce the amount of harmful emissions that are released as a by-product of generating electricity from fossil fuels.

Seawater air conditioning works by pumping cold (44-45°F), deep (1,600-1,800 feet) seawater into a cooling station (Figure 1). Here, the cold seawater is used to chill fresh water flowing in nearby pipes. The chilled fresh water is then piped into hotels for cooling purposes while the seawater (slightly warmed to 53-58°F) is pumped back into the ocean at a shallower depth (120-150 feet).


Sustainable Development and the Hawaii Clean Energy Initiative: An Economic Assessment

 The connection between the emerging field of sustainability science and the economics of sustainable development has motivated a line of interdisciplinary research inspired by the notion of “positive sustainability.” This notion is founded on three principles or pillars: (1) adopting a complex systems approach to modeling and analysis, integrating natural resource systems, the environment, and the economy; (2) pursuing dynamic efficiency, that is, efficiency over both time and space in the management of the resource-environment-economy complex to maximize intertemporal well-being; and (3) enhancing stewardship for the future through intertemporal equity, which is increasingly represented as intergenerational neutrality or impartiality. This paper argues that the Hawaii Clean Energy Initiative (HCEI) fails to satisfy all three pillars of sustainability, and consequently fails to achieve the "sustainability criterion" put forward by Arrow, Dagupta, Daily et al: that total welfare of all future generations not be diminished. HCEI shrinks the economy, contributes negligibly to reduction of global carbon emissions, and sparks rent seeking activity (pursuit of special privilege and benefits) throughout the State of Hawaii.


Tax Credit Incentives for Residential Solar Photovoltaic in Hawai‘i

Solar photovoltaic (PV) tax credits are at the center of a public debate in Hawai‘i. The controversy stems largely from unforeseen budgetary impacts, driven in part by the difference between the legislative intent and implementation of the PV tax credits. HRS 235-12.5 allows individual and corporate taxpayers to claim a 35% tax credit against Hawaii state individual or corporate net income tax for eligible renewable energy technology, including PV. The policy imposes a $5,000 cap per system, and excess credit amounts can be carried forward to future tax years. Because the law did not clearly define what constitutes a system or restrict the number of systems per roof, homeowners have claimed tax credits for multiple systems on a single property. In an attempt to address this issue, in November 2012, temporary administrative rules define a PV system as an installation with output capacity of at least 5 kW for a single-family residential property. The new rule does not constrain the total number of systems per roof, but rather defines system size and permits tax credits for no more than one sub-5 kW system. In other words, it is possible to install multiple 5 kW systems and claim credits capped at $5,000 for each system. There is an additional 30% tax credit for PV capital costs at the federal level. There is no cap for the federal tax credit and excess credits can be rolled over to subsequent years.


A dynamic approach to PES pricing and finance for interlinked ecosystem services: Watershed conservation and groundwater management

A theory of payment for ecosystem services (PES) pricing consistent with dynamic efficiency and sustainable income requires optimized shadow prices. Since ecosystem services are generally interdependent, this requires joint optimization across multiple resource stocks. We develop such a theory in the context of watershed conservation and groundwater extraction. The optimal program can be implemented with a decentralized system of ecosystem payments to private watershed landowners, financed by efficiency prices of groundwater set by a public utility. The theory is extended to cases where land is publicly owned, conservation instruments exhibit non-convexities on private land, or the size of a conservation project is exogenous. In these cases, conservation investment can be financed from benefit taxation of groundwater consumers. While volumetric conservation surcharges induce inefficient water use, a dynamic lump-sum tax finances investment without distorting incentives. Since the optimal level of conservation is generated as long as payments are correct at the margin, any surplus can be returned to consumers through appropriate block pricing. The present value gain in consumer surplus generated by the conservation-induced reduction in groundwater scarcity serves as a lower bound to the benefits of conservation without explicit measurement of other benefits such as recreation, biodiversity, and cultural values.


Published Version: Roumasset, J., Wada, C.A., 2013. A dynamic approach to PES pricing and finance of interlinked ecosystem services: Watershed conservation and groundwater management. Ecological Economics. 87, 24-33.




Statewide Economy and Electricity-Sector Models for Assessment of Hawai‘i Energy Policies

This paper uses both a "top-down" and "bottom-up" economic model to asses the cost and greenhouse implications of various energy and environmental alternatives. The Hawai‘i Computable Generable Equilibrium Model (H-CGE) is a “top-down,” economy-wide model that captures the interaction between both producers and consumers, including full price effects between sectors. The Hawai‘i Electricity Model (HELM) is a “bottom-up” representation of Hawai‘i’s electricity sector.  The dynamic optimization model solves for the least-cost mix of generation subject to satisfying demand, regulatory requirements, and system constraints.  The models are fully integrated in respect to the electricity sector, where overall economic conditions determine electricity demand and, subsequently, the type of electricity generation has economic impact.


The Economics of Groundwater

We provide synthesis of the economics of groundwater with a focus on optimal management and the Pearce equation for renewable resources. General management principles developed through the solution of a single aquifer optimization problem are extended to the management of multiple resources including additional groundwater aquifers, surface water, recycled wastewater, and upland watersheds. Given an abundant (albeit expensive) substitute, optimal management is sustainable in the long run. We also discuss the open-access equilibrium for groundwater and the conditions under which the Gisser-Sanchez effect (the result that the present value generated by competitive resource extraction and that generated by optimal control of groundwater are nearly identical) is valid. From the models and examples discussed, one can conclude that optimization across any number of dimensions (e.g. space, time, quality) is driven by a system shadow price, and augmenting groundwater with available alternatives lessens scarcity and increases welfare if timed appropriately. Other rules-of-thumb including historical cost recovery, independent management of separate aquifers, and maximum sustainable yield are inefficient and may involve large welfare losses.

Working Paper

Foundations for Hawai‘i’s Green Economy: Economic Trends in Hawai‘i Agriculture, Energy, and Natural Resource Management

It is clear from previous studies that Hawai‘i’s natural capital is highly valued and should be managed accordingly. For example, Kaiser et al. (1999) estimate that the Ko‘olau watershed provides forest benefits valued between $7.4 and $ 14 billion, comprised of water resource benefits ($4,736-­‐9,156 million), species habitat benefits ($487-­‐1,434 million), biodiversity benefits ($0.67-­‐5.5 million), subsistence benefits ($34.7-­‐131 million), hunting related benefits ($62.8-­‐237 million), aesthetic values ($1,040-­‐3,070 million), commercial harvest ($0.6-­‐2.4 million), and ecotourism ($1,000-­‐2,980 million). Hawai‘i’s coral reefs alone are estimated to generate at least $10 billion in present value, or $360 million per annum (Cesar and van Beukering, 2004). Another recent study considering the value to all U.S. households finds that increasing the current size of marine protected areas in Hawai‘i from 1% to 25% and restoring five acres of coral reefs annually would generate $34 billion per year (Bishop et al., 2011).2 While many studies that place value on Hawai‘i’s natural resources have been undertaken in recent years, little is known about the economic impacts generated by agencies charged with protecting and managing these important resources in Hawai‘i. To that end, an online survey of natural resource managers in Hawai‘i was conducted, and the results are summarized in section 6 of this report.


Foundations for Hawai‘i’s Green Economy: Economic Trends in Hawai‘i Agriculture, Energy, and Natural Resource Management

This report provides the first comparison of standard economic indicators for three sectors that are key to future sustainability in Hawai‘i - renewable energy, agriculture and natural resource management. Economic information has long been collected for many sectors in Hawai‘i, including agriculture and energy, but no systematic surveys have been conducted on the NRM sector to date. With support from The Nature Conservancy and Hau‘oli Mau Loa Foundation, the University of Hawai‘i Economic Research Organization was tasked with characterizing this important part of Hawai‘i’s economy, in terms of number and types of jobs, salaries, and annual expenditures.


An Assessment Of Greenhouse Gas Emissions-Weighted Clean Energy Standards

Published in the journal Energy Policy, this paper quantifies the relative cost-savings of utilizing a greenhouse gas emissions-weighted Clean Energy Standard (CES) in comparison to a Renewable Portfolio Standard (RPS). Using a bottom-up electricity sector model for Hawaii, this paper demonstrates that a policy that gives “clean energy” credit to electricity technologies based on their cardinal ranking of lifecycle GHG emissions, normalizing the highest-emitting unit to zero credit, can reduce the costs of emissions abatement by up to 90% in comparison to a typical RPS. A GHG emissions-weighted CES provides incentive to not only pursue renewable sources of electricity, but also promotes fuel-switching among fossil fuels and improved generation efficiencies at fossil-fired units. CES is found to be particularly cost-effective when projected fossil fuel prices are relatively low.


UHERO has developed a two-page Policy Brief on this paper. The full publication can be found at http://www.sciencedirect.com/science/article/pii/S0301421512000961

Economic Analysis of the Proposed Rule to Prevent Arrival of New Genetic Strains of the Rust Fungus Puccinia psidii in Hawai‘i

Since its first documented introduction to Hawai‘i in 2005, the rust fungus P. psidii has already severely damaged Syzygium jambos (Indian rose apple) trees and the federallyendangered Eugenia koolauensis (nioi). Fortunately, the particular strain has yet to cause serious damage to ‘ōhi‘a, which comprises roughly 80% of the state’s native forests and covers 400,000 ha. Although the rust has affected less than 5% of Hawaii’s ‘ōhi‘a trees thus far, the introduction of more virulent strains and the genetic evolution of the current strain are still possible. Since the primary pathway of introduction is Myrtaceae plant material imported from outside the state, potential damage to ‘ohi‘a can be minimized by regulating those high-risk imports. We discuss the economic impact on the state’s florist, nursery, landscaping, and forest plantation industries of a proposed rule that would ban the import of non-seed Myrtaceae plant material and require a one-year quarantine of seeds. Our analysis suggests that the benefits to the forest plantation industry of a complete ban on non-seed material would likely outweigh the costs to other affected sectors, even without considering the reduction in risk to ‘ōhi‘a. Incorporating the value of ‘ōhi‘a protection would further increase the benefit-cost ratio in favor of an import ban.

Working Paper

Species Invasion as Catastrophe: The Case of the Brown Tree Snake


This paper develops a two-stage model for the optimal management of a potential invasive species. The arrival of an invasive species is modeled as an irreversible event with an uncertain arrival time. The model is solved in two stages, beginning with the post-invasion stage. Once the arrival occurs, the optimal path of species removal is that which minimizes the present value of damage and removal costs plus the expected present value of prevention costs. An expenditure-dependent, conditional hazard rate describing species arrival is developed based on discussions with natural resource managers. We solve for the optimal sequence of prevention expenditures, given the minimum invasion penalty as just described. For the case of the Brown Tree Snake potentially invading Hawaii, we find that pre-invasion expenditures on prevention are inverse U-shaped in the hazard rate. Efficient prevention should be approximately $2.9million today and held constant until invasion. Once invasion occurs, optimal prevention requires $3.1million annually and $1.6million per year on species removal to keep the population at its steady state level, due to high search costs at very small population levels.

Published: Burnett, K., S. Pongkijvorasin, and J. Roumasset. "Species Invasion as Catastrophe: The Case of the Brown Tree Snake," Environmental and Resource Economics, 51:241-254, doi:10.1007/s10640-011-9497-3.


Page: 1 | 2 | 3 | 4 | 5