1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

Products: Wada, Christopher

Keep up to date with the latest UHERO products.

Ordering Renewables: Groundwater, Recycling and Desalination

 

Optimal recycling of minerals can be thought of as an integral part of the theory of the mine. In this paper, we consider the role that wastewater recycling plays in the optimal extraction of groundwater, a renewable resource. We develop a two-sector dynamic optimization model to solve for the optimal trajectories of groundwater extraction and water recycling. For the case of spatially increasing recycling costs, recycled water serves as a supplemental resource in transition to the steady state. For constant unit recycling cost, recycled wastewater is eventually used as a sector-specific backstop for agricultural users, while desalination supplements household groundwater in the steady state. In both cases, recycling water increases welfare by shifting demand away from the aquifer, thus delaying implementation of costly desalination. The model provides guidance on when and how much to develop resource alternatives.

WORKING PAPER


Optimal Provision and Finance of Ecosystem Services: the Case of Watershed Conservation and Groundwater Management

Payments for ecosystem services should be informed by how both the providing-resource and the downstream resource are managed. We develop an integrated model that jointly optimizes conservation investment in a watershed that recharges a downstream aquifer and groundwater extraction from the aquifer. Volumetric user-fees to finance watershed investment induce inefficient water use, inasmuch as conservation projects actually lower the optimal price of groundwater. We propose a lump-sum conservation surcharge that preserves efficient incentives and fully finances conservation investment. Inasmuch as proper watershed management counteracts the negative effects of water scarcity, it also serves as adaptation to climate change. When recharge is declining, the excess burden of non-optimal watershed management increases.

working paper

 


Optimal and Sustainable Groundwater Extraction

With the specter of climate change, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is optimal. In some cases the optimal path converges to the maximum sustainable yield. For sufficiently convex extraction costs, the extraction path converges to an internal steady state above the level of maximum sustainable yield. We describe the challenges facing groundwater managers faced with multiple aquifers, the prospect of using recycled water, and the interdependence with watershed management. The integrated water management thus described results in less water scarcity and higher total welfare gains from groundwater use. The framework also can be applied to climate- change specifications about the frequency, duration, and intensity of precipitation by comparing before and after optimal management. For the case of South Oahu in Hawaii, the prospect of climate change increases the gains of integrated groundwater management.

working paper


Privatizing Public Services with Externalities: Water and Wastewater Systems

 

Published: Roumasset, J., 2000. Privatizing public services with externalities: water and wastewater systems,” Water Resources Update, 117 (October 2000).


Page: 1 | 2 | 3