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the transfer of information among indicators. We find that allowing
for common trends improves forecasting performance over a stationary
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1 Introduction

Empirical research generally avoids the direct use of mixed frequency data

by first aggregating higher frequency series and then performing estimation

and testing at the lowest frequency. As a result, information available in the

high frequency dataset is not fully exploited. For example, at the end of the

sample, when low frequency data has not yet been released, the most recent

observations of the high frequency series are discarded. This end-of-sample

information loss may be crucial when the task is to estimate current economic

conditions or forecast current-quarter indicators (nowcasts).1

One potential solution to this problem is to use both high and low frequency

data in the estimated model. In recent years there has been a growing interest

in estimating macroeconomic coincident indices based on samples of mixed

frequency indicators. Several studies rely on the probability model described

by Stock and Watson (1991) to extract an unobserved common factor from a

vector of stationary macroeconomic variables (see for exmple Aruoba et al.,

2009; Mariano and Murasawa, 2003). While the common factor may be a

useful measure of the unobserved business cycle, the model can also be used

for estimating the unobserved value of low frequency indicators at the end of

the sample and beyond.

Several studies have shown improved forecasting performance using mixed

1Friedman (1962) and Chow and Lin (1971) proposed an alternative approach where
lower frequency series are disaggregated to higher frequency ones. Additional treatment of
low frequency series with missing observations is provided by Dempster et al. (1977), Palm
and Nijman (1984) and Little and Rubin (1987). A benefit of the mixed frequency factor
models referenced throughout this paper is that they implicitly generate interpolated values
of the low frequency series.
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frequency factor models. Camacho and Perez-Quiros (2010) show that fore-

casts from a one-factor model of GDP growth dominate a group of institu-

tional forecasts on a mean squared error basis, and Nunes (2005) reports an

improvement in nowcasting performance of a mixed frequency model over a

low frequency AR(1) model of GDP growth. Hyung and Granger (2008) find

that GDP growth rate forecasts from their Linked-ARMA mixed-frequency

model are more accurate than quarterly forecasts from a low-frequency model.

Similarly, the GDP growth nowcasts of Evans (2005) show an improvement

over advanced or preliminary GDP releases or the median Money Market Ser-

vices forecast. All of the studies mentioned above estimate one-factor models

using stationary monthly or quarterly macroeconomic indicators; any non-

stationary levels are converted to growth rates. A potential drawback of this

approach is that trends are eliminated from all input series. Yet, if the trends

are shared among the indicators, modeling them as common components may

improve forecasts.

Some studies extract unobserved components from mixed frequency data

in levels. Proietti and Moauro (2006) decompose a vector of time series in lev-

els into a single common trend and non-stationary idiosyncratic components.

Koopman and Lucas (2005) and Azevedo et al. (2006) decompose a vector

of time series into common cycles and individual trend components. Rather

than first differencing to remove trends, they model idiosyncratic trends and

focus on extracting and analyzing business cycle indicators. Non-stationarity

in the idiosyncratic components implies that individual indicators are allowed

to diverge from each other. However, if the indicators are cointegrated, then
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capturing non-stationarity in the form of common trends will facilitate the

transfer of information from high frequency indicators to low frequency ones,

which in turn will benefit nowcasting and forecasting performance. Although

not using a common factor structure, Seong et al. (2012) obtain improved fore-

casting performance from a mixed frequency error correction model compared

to a single-frequency model.

A related literature makes use of the mixed data sampling (MIDAS) regres-

sion models first developed by Ghysels et al. (2004) and Ghysels et al. (2007).

Clements and Galvão (2008, 2009) study the forecasting performance of MI-

DAS regression models, and Bai et al. (2013) examine the relationship between

MIDAS and the Kalman filter used in mixed-frequency dynamic factor mod-

els. The latter study finds that the two methods, when applied to stationary

series, produce similar forecasts. Götz et al. (2012) allow for unit roots in

the data, and analyze the forecasting performance of a MIDAS based error

correction model. In line with research on single-frequency models, they find

that ignoring cointegration and estimating a misspecified differenced model

significantly deteriorates forecast accuracy.

In contrast to studies that extract business cycle components from a set of

indicators, the focus of this paper is on the forecasting performance of small

mixed-frequency dynamic factor models. We extend the existing literature by

modeling the indicators in levels and allowing for multiple common factors

to capture any cointegrating relationship among the indicators. In general,

we expect the observed time series to follow common stochastic trends, the

number of which determines the number of factors in the model. We com-
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pare the forecasting performance of the common-trends factor model in levels

with the stationary factor model in differences typically used in the literature.

In addition, we illustrate the misspecification of the latter when applied to

a data set containing common stochastic trends. Using both, simulated and

observed data, we find that the common-trends factor model (CTFM) outper-

forms the stationary factor model (SFM) at all analyzed horizons. Our results

demonstrate that when the indicators are integrated and cointegrated, mod-

eling common stochastic trends, as opposed to eliminating them, will improve

forecasts. In addition, we show that including high frequency data in mixed

frequency models improves their forecasting performance compared to models

with only low frequency aggregates.

The remainder of the paper is organized as follows. In Section 2 we give

the general formulation and describe the estimation of strict dynamic multi-

factor models with mixed frequency samples containing stochastic trends. In

Section 3 we discuss the misspecification of the stationary factor model when

the indicators contain common trends. In Section 4 we illustrate the improve-

ment in forecasting performance of the CTFM over the SFM in a Monte Carlo

setting. In the empirical application of Section 5, we contrast the forecasting

performance of the common-trends factor model with the stationary factor

model and a naive random walk model using macroeconomic data. Section 6

concludes.
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2 Methodology

Below we give the general formulation and describe the estimation of a strict

dynamic multi-factor model with mixed frequency samples. We pay special at-

tention to non-stationary data and the handling of common stochastic trends.

2.1 Mixed Frequency Dynamic Multi Factor Model

Our analysis is based on the assumption that economic indicators can be mod-

eled as linear combinations of two types of unobserved orthogonal processes.

The first one is an s × 1 vector of common factors, ft, that captures the

co-movements of indicators. The second is an n × 1 vector of idiosyncratic

components, εt, that is driven by indicator specific shocks. In contrast to

Stock and Watson (1991) and the mixed frequency implementations of their

framework, we do not restrict our analysis to a single common factor. In-

stead, as in Macho et al. (1987), we choose the number of factors to match the

number of common stochastic trends, s, in our dataset.

The underlying data generating process is assumed to evolve at a high

frequency. In empirical applications the base frequency is typically set to the

highest available sampling frequency. Correspondingly, the n × 1 vector of

observed indicators, yt, is subject to missing values at the base frequency.

Indicators sampled at lower frequencies are assumed to be period aggregates

of their latent base frequency counterparts. Let ẙt denote an n × 1 vector

capturing the evolution of the indicators at the base frequency. For example, if

yt contains one monthly indicator and one quarterly indicator, then ẙt contains
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the observed values of the monthly indicator and latent monthly values of the

quarterly indicator. The ẙt vector can be modelled as a linear combination of

the two mutually uncorrelated unobserved stochastic components ft and εt

ẙt = Λ̊fft + Λ̊εεt , (1)

where Λ̊f is an n × s matrix of factor loadings and Λ̊ε is a diagonal n × n

matrix containing the loading parameters of idiosyncratic shocks.

In the case of non-trending data, the kth factor fk,t, is assumed to follow a

stationary AR(p) process at the base frequency

φk(L)fk,t = ηk,t , φk(L) = 1 −
p∑
i=1

φk,iL
i , ηk,t ∼ N(0, σk) , k = 1 . . . s .

(2)

If the data contains stochastic trends, the kth factor can be modeled as differ-

ence stationary process

∆fk,t = µk+ζk,t , ρk(L)ζk,t = ηk,t , ρk(L) = 1−
p∑
i=1

ρk,iL
i , ηk,t ∼ N(0, σk) ,

(3)

with the roots of the lag polynomial ρk(L) residing outside the unit circle.

The s factors are assumed to be mutually uncorrelated. The idiosyncratic

component associated with each variable, εj,t, is assumed to follow a stationary

AR(m) process at the base frequency

γj(L)εj,t = ηj,t , γj(L) = 1−
m∑
i=1

γj,iL
i , ηj,t ∼ N(0, σj) , j = 1 . . . n. (4)
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By definition, the idiosyncratic shocks, ηj,t, are mutually uncorrelated across

all n indicators. To simplify notation, in the remainder of this section we will

assume that the factors and the idiosyncratic components follow first order

AR(1) dynamics.

The problem is to estimate the parameters and the unobserved processes

from the fluctuations of the observed indicators, and then use the estimated

model to produce forecasts. Estimation requires that the latent high frequency

variables in ẙt, or their components in ft and εt, be aggregated to match the

observed indicators in yt, which may include flows and stocks. A flow type

indicator can be modeled as the accumulated sum of the common factor and

idiosyncratic component during the observation period. A stock type indicator

can be modeled either as a snapshot in time or as a period average of the

latent high frequency variables. To illustrate the accumulation process, let’s

assume that indicators are sampled at monthly and quarterly frequencies. To

deal with both stock and flow variables, one can aggregate the kth monthly

common factor, fk,t, and the jth monthly idiosyncratic component εj,t, into f̃k,t

and ε̃j,t, respectively, according to

f̃k,t = ψtf̃k,t−1 + θfk,t , k = 1 . . . s , (5)

ε̃j,t = ψtε̃j,t−1 + θεj,t , j = 1 . . . n , (6)

where tilde (̃·) denotes the aggregated value of the unobserved component (see
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also Harvey, 1989, Section 6.3). The cumulator variable ψt, is defined as

ψt =

 0 if t is the first month of the quarter

1 otherwise
(7)

for flows and time averaged stocks, and ψt = 0 for snapshots of stocks. The

scaling variable, θ, takes on the values

θ =

 1 for flow type variables and for snapshots of stocks

1/3 for time averaged stock variables.
(8)

The model can be cast in state-space form, and we use the Kalman filter to

estimate the unobserved components. In the state space representation of the

model, all unobserved components are collected in the state vector αt. For the

case of one factor, one monthly, and one quarterly indicator, the state vector

takes the form

αt = (ft, f̃t, εM,t, εQ,t, ε̃Q,t)
′ , (9)

where ft, εM,t and εQ,t are the base frequency (monthly) values of the factor and

the idiosyncratic components corresponding to the monthly and the quarterly

variable, respectively, and tilde (̃·) denotes the aggregated (quarterly) value of

the unobserved components. The transition equation

αt = Ttαt−1 + ηt , ηt ∼ N(0,Σ) , αt ∼ N(a,P ) , t = 1 . . . T , (10)

describes the evolution of the state vector. The block diagonal and time vary-
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ing transition matrix Tt contains the coefficients specifying the dynamics and

the temporal aggregation of the state

Tt = diag(Φt, γM ,ΓQ,t) , (11)

where

Φt =

 φ 0

θφ ψt

 , k = 1 . . . s , ΓQ,t =

 γQ 0

θγQ ψt

 . (12)

In Φt and ΓQ,t the first row specifies the dynamics and the second row the

accumulation of the unobserved components. The block diagonal covariance

matrix of transition shocks, Σ takes the form

Σ = diag(Σf , σ
2
M ,ΣQ) , (13)

so that the factors and the idiosyncratic components are mutually uncorre-

lated. The aggregation scheme implies that

Σf = σ2
f

 1 θ

θ θ2

 , ΣQ = σ2
Q

 1 θ

θ θ2

 . (14)

The measurement equation relates the observed indicators, yt, to the unob-

served state vector

yt = Zαt , (15)

where Z is a sparse matrix containing the loading coefficients of the common
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and idiosyncratic components

Z =

[
Λf,2×2 ΛM,2×1 ΛQ,2×2

]
=

 λf,M 0 λM 0 0

0 λf,Q 0 0 λQ

 . (16)

In Λf and ΛQ the first column corresponds to the monthly frequency and

the second to the quarterly. Because each observed indicator is related to the

unobserved components accumulated to the indicator’s own frequency, each

row of these sub-matrices contains at most one parameter.

The model parameters are estimated by maximum likelihood using the

Kalman filter’s prediction error decomposition (see Harvey, 1989, p. 125). At

the end of the sample, the Kalman filter is used to produce out-of-sample

predictions of the state variables. Forecasts of the indicators are then obtained

by plugging the predicted state into the measurement equation. By iterating

the Kalman filter from the end of the sample h periods forward, we obtain the

h-step-ahead forecasts of the variables entering the model.

2.2 Identification, Stocks and Flows

A multi-factor model is only identified up to a rotation of the factors. In

a single-frequency model, column k of the factor-loading matrix corresponds

to the loading of factor k on the observed indicators, and identification can

be achieved by zeroing out the elements above the diagonal of the loading

matrix. In a multi-frequency model, a sub-matrix Λf,k corresponds to the

loading of the kth factor on the observed indicators, and identification requires

restrictions on the rows of Λf,k. Specifically, identification can be achieved by
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setting the i < k rows of Λf,k to zero for k = 1 . . . s.

Equations (5)-(8) imply that at the end of the quarter, a given unobserved

component accumulated as a flow is 3 times larger than the same component

accumulated as a time averaged stock. In multi-frequency factor models, the

scale of the aggregated unobserved components can be controlled by multi-

plying the corresponding columns of the Zt matrix by an arbitrary δ, and

multiplying the corresponding row of the state equation by 1/δ. Because

the loading parameters in the Zt matrix implicitly cancel out the effects of

θ = 1/3 = 1/δ, the distinction between summation and averaging of the un-

observed components is unidentified. Thus, it is the researcher’s choice to

accumulate the unobserved components as flows or time averaged stocks.

2.3 Levels vs. Differences

Economic time series are often characterized as unit root processes, and this

gives rise to different approaches to specification and estimation of mixed-

frequency factor models. The choice is to either explicitly model any long-

run equilibrium relationships that exist among the indicators, or remove any

non-stationarity before modeling by differencing each indicator.2 In the first

approach, the number of common factors is objectively determined by the

number of common stochastic trends, s, in the n observed series, and can

be deduced from the n − s cointegrating relationships in the system. The

cointegrating vectors are the rows of a matrix A(n−s)×n which has the property

2A third approach, followed by Koopman and Lucas (2005) and Azevedo et al. (2006),
allows indicator specific trends to filter out the low frequency components of each indicator.
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AΛ̊f = 0, so that premultiplying (1) with A gives

Aẙt = AΛ̊εεt , (17)

an (n− s) × 1 stationary process. In contrast, when the stochastic trends are

removed by differencing the series, the existing literature on mixed-frequency

strict factor models generally restricts the number of common factors to a

single measure of the latent business cycle.

Differencing eliminates the need to estimate multiple factors and focuses

attention on a single index of current business conditions. However, mixed-

frequency stationary one-factor models are also frequently used for forecast-

ing3, and modeling differences when the indicators in levels contain common

stochastic trends leaves the model misspecified (see Section 3) and may lead

to poor forecasts. The conversion to differences discards the relationship be-

tween the level variables, and may amplify the noise relative to the signal in

the series: high frequency indicators usually contain a large amount of noise,

and differencing them further weakens their signal to noise ratio. If stationary

linear combinations of the non-stationary indicators exist, that is, they are

cointegrated, it may be optimal even for short horizon forecasting to keep the

indicators in levels and let the factors capture the common stochastic trends

(Christoffersen and Diebold, 1998).

3Predicted levels of the indicators are derived by reversing the differencing transforma-
tion.
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3 Misspecification of SFM for Data with Com-

mon Trends

Below we illustrate the misspecification of stationary factor models when the

indicators contain common stochastic trends. To keep the analysis as simple as

possible, our data generating process contains only first order dynamics and we

begin by restricting our attention to the base frequency. Specifically, assume

that the true data generating process (DGP) is given by the common-trends

factor model (CTFM) at the base frequency,

ẙt = Λ̊fft + Λ̊εεt,

where ft = ft−1 + ζt,

with ζt = Tζζt−1 + ηζ,t, ηζ,t ∼ N(0,Σζ) (18)

and εt = Tεεt−1 + ηε,t, ηε,t ∼ N(0,Σε) .

Transforming the DGP by first differencing gives us

∆ẙt = Λ̊f∆ft + Λ̊ε∆εt

with ∆ft = ζt = Tζζt−1 + ηζ,t, (19)

and ∆εt = Tε∆εt−1 + ∆ηε,t .
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Note, the implied model in equation (19) is different from the stationary one-

factor model commonly used in the literature,

∆ẙt = Λ∗ff
∗
t + Λ∗εε

∗
t

with f ∗t = T ∗f f
∗
t−1 + η∗f,t (20)

and ε∗t = T ∗ε ε
∗
t−1 + η∗ε,t .

The stationary model in (19) requires the same number of factors as present in

the DGP, and an idiosyncratic component that follows an MA(1) process with

a unit root. In contrast, the SFM in equation (20) contains a single common

factor regardless of the number of factors in the DGP, and the idiosyncratic

components are assumed to follow stationary iid processes. The models in

(19) and (20) are only equivalent if both contain the same number of common

factors, and η∗ε,t = ηε,t − ηε,t−1.

To explore the relationship between the SFM and the CTFM further, we

integrate the differences, ∆ẙt, in equation (20),

ẙt = ẙ1 +
t∑

τ=2

∆ẙτ

= ẙ1 + Λ∗f

t∑
τ=2

f ∗τ + Λ∗ε

t∑
τ=2

ε∗τ

= ẙ1 + Λ∗f f̆
∗
t + Λ∗ε ε̆

∗
t . (21)

where f̆ ∗t is a common stochastic trend and ε̆∗t is a vector of idiosyncratic

stochastic trends. This is in contrast with the CTFM (DGP), where the id-

iosyncratic components are assumed to be stationary. Note, the idiosyncratic
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components in (21) will be non-stationary even if the number of factors in the

SFM matches the number of common trends in the DGP unless η∗ε,t = ∆ηε,t is

imposed in (20) so that the autoregressive and the moving-average unit roots

cancel out in ε̆∗t . The presence of idiosyncratic stochastic trends, ε̆∗t , in (21)

implies that the level of the extracted factor, f̆ ∗t , will arbitrarily diverge from

the level of the indicators. In contrast, cointegration ties the series together

so that valuable high frequency information is incorporated into low frequency

predictions through the common factors. Differencing the data breaks the

cointegrating link among the indicators, and some of the signal leaks out to

the idiosyncratic components, which do not contribute to the transfer of in-

formation from high frequency to low frequency series. Consequently, the

forecasting performance of the SFM will be affected by inefficient transfer of

information.

An additional form of misspecification may occur with differenced indica-

tors at the aggregation stage.4 Consider the multi-frequency model in which

yQ,t, the low frequency (quarterly) variable in yt is defined as the accumulated

value of its latent high frequency (monthly) counterpart in ẙt. Specifically, by

aggregating the corresponding element of ẙt in (18) to the quarterly observa-

tion frequency, we obtain

yQ,t =
1

3

3∑
δ=1

ẙQ,t−3+δ , (22)

where t falls on the last month of a quarter. Differencing at the quarterly

4See also Mariano and Murasawa (2003). For simplicity we assume that the indicators
have not undergone a non-linear transformation. Issues related to the temporal aggregation
of log-transformed data were discussed by Proietti and Moauro (2006).
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frequency gives

∆3yQ,t = yQ,t − yQ,t−3 =
1

3

3∑
δ=1

∆3ẙQ,t−3+δ , (23)

where ∆3 denotes the change during a quarter. Note, the change of ẙQ,t dur-

ing a quarter can be written as the sum of monthly differences ∆3ẙQ,t =∑3
ι=1 ∆ẙQ,t−3+ι, so that

∆3yQ,t = yQ,t − yQ,t−3 =
1

3

3∑
δ=1

3∑
ι=1

∆ẙQ,t−6+δ+ι . (24)

This expression can be simplified by expanding the double summation into

∆3yQ,t =
1

3
(∆ẙQ,t−4 + 2∆ẙQ,t−3 + 3∆ẙQ,t−2 + 2∆ẙQ,t−1 + ∆ẙQ,t) , (25)

but this aggregation becomes cumbersome to implement if the base frequency

is daily and the dataset contains quarterly observations. As an alternative,

Evans (2005) and Aruoba et al. (2009), who used a daily base frequency in

their studies, applied the aggregation scheme (5) to differenced data. This is

equivalent to an approximation of the weighted average in (25) by the simple

average of a latent variable ∆ẏQ,t

∆3yQ,t =
1

3
(∆ẏQ,t−2 + ∆ẏQ,t−1 + ∆ẏQ,t) =

1

3

3∑
δ=1

∆ẏQ,t−3+δ , (26)

16



where ∆ẏQ,t is an element of ∆ẏt, which can be defined similarly to (20)

∆ẏt = L̇∗ḟ ∗t + Ġ∗ε̇∗t with ḟ ∗t = Ṫ ∗f ḟ
∗
t−1 + η̇∗f,t and ε̇∗t = Ṫ ∗ε ε̇

∗
t−1 + η̇∗ε,t .

(27)

While (25) spans two quarterly observation periods, (26) only spans one, and

therefore the approximation directly affects the dynamics of the model.

To summarize, when the DGP contains common stochastic trends, the

SFM has misspecified dynamics both at the base frequency and the observa-

tion frequency, and introduces idiosyncratic stochastic trends. These forms of

misspecification will affect the decomposition of the observed data into com-

mon and idiosyncratic components, lead to inefficient transfer of information

among the variables, and deteriorate the forecasting performance of the model.

4 Simulations

In this section we investigate the relative forecasting performance of the CTFM

and SFM when the data generating process coincides with the CTFM. In ad-

dition, to illustrate the benefit of high frequency data in these models, we

include in our comparison the single-frequency counterpart of the CTFM that

uses temporally aggregated indicators. To keep the exercise simple, we re-

strict our mixed frequency model to three indicators (two monthly and one

quarterly), one or two stochastic common trends, and first order dynamics in

the idiosyncratic components. Each stochastic trend contains drift and auto-

correlated errors. The monthly variables are assumed to be released with a

one-month lag, and the quarterly variable with a three-month lag.
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[Insert Figure 1 about here]

Figure 1 illustrates the timing of data releases and forecast horizons rela-

tive to the forecast date. The passage of time is indicated by a shift of the

forecast date, T , forward in time. The information set increases when there

is a new release of the monthly and quarterly indicators. In the notation for

the quarterly forecasts, Qi,T+j, i indicates the quarter for which the forecast

is being made, and j indicates the forecast horizon in months. Note, at any

given forecast date, only a subset of forecast horizons falls on an end-of-quarter

month.

Having specified the data generating process, we simulate a 21-year long

sample of monthly and quarterly observations from a given random seed. We

reserve the first 20 years of the sample for estimation of the CTFM and SFM

models, and then produce forecasts for horizons ranging from −2 months to

+10 months, from which only every third one coincides with end-of-quarter

months. To obtain forecasts for the horizons that did not fall on an end-of-

quarter month, we repeat the forecasting exercise recursively (extend the size of

the sample by one month, repeat estimation and forecasting) two more times.

Once we obtained a quarterly forecast for each horizon between −2 months to

+10 months, we compare the predictions to the corresponding values in the

remainder of the simulated sample.

[Insert Table 1 about here]

We repeat the forecasting exercise using the CTFM and SFM described

above for 1000 different seeds and 6 different parameterizations listed in Ta-
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ble 1. In these scenarios the loading parameters across the common stochastic

trends always add up to 1, and the idiosyncratic components follow an au-

toregressive process with either low or high persistence, denoted by subscript

LP or HP , respectively. Scenario A represents a situation where two com-

mon stochastic trends have similar loadings on all three variables. Scenario

B illustrates the case when the two monthly variables do not share common

stochastic trends. Finally, Scenario C illustrates the case when all variables

are affected by only a single common stochastic trend.

We compare the CTFM to SFMs with one and two factors under scenarios

A and B, but only to a one-factor SFM under scenario C. We also compare

the mixed frequency CTFM to its single-frequency counterpart: the quar-

terly common trends factor model (QCTFM) uses indicators aggregated to

the quarterly frequency. While the comparison of the CTFM with the SFM

illustrates the effect of eliminating common trends in mixed frequency models,

the comparison of the CTFM with its quarterly counterpart illustrates the

benefit of harnessing high frequency data in the correctly specified common

trends factor model. For each parameterization and each forecast horizon, we

evaluate the improvement in forecasting performance of the CTFM relative

to the SFM and QCTFM by calculating the reduction in root mean squared

forecast error (RMSE) across the 1000 different random seeds. The results,

categorized by the various forms of the data generating process and estimated

models, are listed in Table 2.

[Insert Table 2 about here]
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As shown in Section 3, when the DGP contains common stochastic trends

the SFM is misspecified whether it uses the correct number of factors or not:

it introduces spurious idiosyncratic stochastic trends and suffers from misspec-

ified dynamics. Therefore it is not surprising that the CTFM outperforms the

SFM for all considered parameterizations and at all analyzed horizons. The

different combinations of factor loadings do not seem to have large effects on

the results. However, a reduction in idiosyncratic dynamics (LP ) results in

greater improvements in relative backcasting and nowcasting performance of

the CTFM. For short forecast horizons the CTFM outperforms the SFM by

20% to 35%, depending on model specification.

The improvements of the CTFM over the one-factor SFM remain similar

for one and two factors in the DGP. And, while adding a second factor to the

SFM has little effect on the short horizon results, it does cause a deterioration

in long horizon forecast performance. These findings suggest that additional

factors in the SFM split the differenced indicators into more unobserved com-

ponents, but do not improve model specification. As our empirical results in

Section 5.1 illustrate, the first factor in the SFM captures most of the sig-

nal in the differenced data set, and the second factor is heavily affected by

noise. Consequently, the integrated value of the second stationary factor has

a limited effect at short horizons, but leads to a deterioration in forecasting

performance at longer horizons.

[Insert Figure 2 about here]
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Figure 2 illustrates the root mean squared forecast error for the CTFM,

SFM with one and two factors, and the QCTFM for the considered forecast

horizons. Because the QCTFM does not benefit from any intra-quarter infor-

mation, its RMSE remains constant within a quarter but exhibits a decline for

horizons that are full quarters (3, 6, 9 and 12 months) away from the release

date of the quarterly series. In contrast the CTFM and SFM forecasts do take

advantage of the intra-quarter information and have therefore smoother evolu-

tion of RMSE as the forecast horizon changes. The low level and smoothness

of the CTFM RMSE is an indication of its ability to transmit information in

the high frequency indicators to the quarterly forecasts.

5 Empirical Application

To illustrate the forecasting performance of the CTFM relative to the SFM, we

make use of monthly real personal income (RPI) and real personal consumption

expenditures (PCE) to forecast quarterly real gross domestic product (GDP).

[Insert Table 3 about here]

Table 3 summarizes the sampling frequencies and reporting lags of the indica-

tors in our study.5 Although monthly real personal consumption expenditures

5Note that we do not construct a real-time data set as in Giannone et al. (2008); our
data set reflects all the revisions prior to January 25, 2013, the day we obtained the data.
Because the first (“advance”) and the second (“preliminary”) releases of real GDP are often
significantly revised, we treat the fully revised real GDP series in our analysis as if it were
the third or (“final”) release made available three months after a quarter ends. In contrast,
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are only available after January 1995, the nominal value of the series and the

PCE chain type price index are available since 1959, and we use these two

series to calculate an extended history of PCE. Accordingly, we set the start

of our dataset to January 1959 (GDP is available from 1947). Because the

variables exhibit exponential growth, we apply a logarithmic transformation

to the data.

Table 4 reports results from augmented Dickey-Fuller (1979) (ADF) tests

for the null hypothesis of a unit root in each of our indicators. We can not reject

the null hypothesis of a unit root for any of the series at the 10% significance

level.

[Insert Table 4 about here]

To test for cointegration, we apply Johansen’s (1988) rank test to a temporally

aggregated quarterly system. While the number of cointegrating vectors in

the system is invariant to temporal aggregation, the finite sample power of

tests may fall as the number of observations declines (see Marcellino, 1999).

Therefore, we use the rank test to obtain initial estimates of the number of

cointegrating vectors and verify our findings through unit root tests on the

residuals from our CTFM.

[Insert Table 5 about here]

a real time forecaster would progressively update her information set with the advance and
preliminary data points when they are released.
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Results in Table 5 indicate that we can reject the null hypothesis of no coin-

tegrating vectors, and we are unable to reject the hypothesis of at most one

cointegrating vector at the 5% significance level. We tentatively conclude that

our three indicators contain two common stochastic trends. We verify this

result by estimating our model with one and two factors containing a unit

root, and find that the idiosyncratic errors become stationary once two such

factors are included in the model. In other words, a linear combination of

two common stochastic trends is able to explain the non-stationarity of the

individual variables.

We standardize all variables before estimation. Predicted values of the in-

dicators are obtained by reversing the standardization and log-transformation.

To keep the model as simple as possible, we follow Nunes (2005), Aruoba et al.

(2009), and others by restricting the unobserved components to at most first

order dynamics. While these models may suffer from misspecified dynamics,

the dynamic structure won’t change as new data becomes available, as it would

if we allowed for variable lag lengths.

5.1 Estimation Results

Table 6 displays the estimation results for the CTFM with two stochastic

trends using the full data set, and Figure 3 displays the decomposition of the

standardized log-levels into the two common stochastic trends and the idiosyn-

cratic components.6 Of the two factors, the first one has a slightly larger drift

and variance of the errors (µ1, σ1). The idiosyncratic components have ap-

6We estimated the model by Ox 5.10 (Doornik, 2007) and SsfPack 2.2 (Koopman et al.,
1999).
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proximately similar error variances, but their persistence varies considerably.

While the idiosyncratic component of GDP is persistent, it is stationary, im-

plying that the two factors have successfully captured the common stochastic

trends in the three variables.

[Insert Table 6 about here]

[Insert Figure 3 about here]

Table 7 displays the estimation results for the SFM with one and two factors

using the full data set. When a second factor is considered, its autocorrelation,

variance, and loading are all statistically insignificant. This implies that the

contribution of the second factor to the explanatory power of the model is

limited, and the first factor captures most of the signal in the data. The

remaining parameter estimates are significant and fairly similar across the

one-factor and two-factor models. Figure 4 displays the decomposition of the

standardized differences into their idiosyncratic components and two common

factors. (Except for the second factor, there is no qualitative difference in

the subplots when only one factor is considered). The first factor seems to

capture most of the cyclical information, whereas the second factor and the

idiosyncratic components absorb quickly decaying shocks.

[Insert Table 7 about here]

[Insert Figure 4 about here]
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5.2 Forecasting Results

The quality of forecasts depends in part on what information is available at

the time the forecast is made. Although we do not construct a real-time data

set as in Giannone et al. (2008), we do replicate the sequence of data releases

for the three variables. The model is estimated, and a forecast is made at

the end of each month between January 1979 and December 2012. At each

forecast date, T , the latest available monthly observation is for the previous

month (with a time stamp of T − 1). The quarterly indicator is only available

three months after the end of the quarter. Figure 1 in Section 4 provides an

illustration of the timing of data releases and forecast horizons relative to the

forecast date T . As the forecast date is advanced, the amount of available

information increases, and for a given target date the forecast horizon shrinks.

We expect the flow of high frequency information before the release of GDP

to improve estimates of the GDP series.

[Insert Table 8 about here]

Table 8 compares the accuracy of predictions from the CTFM to those from

the SFMs with one and two factors, and a quarterly factor model (QCTFM)

with the monthly series aggregated to the quarterly frequency. We report

the root mean squared error (RMSE) of forecasts, the percentage difference

in RMSE across models, and the 5% marginal significance of the Diebold

and Mariano (1995) tests for forecast accuracy. The GDP predictions pro-

duced by the mixed-frequency models are more accurate than those from the
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single-frequency QCTFM model: the RMSE reduction for the CTFM over the

QCTFM model ranges from 17% to 43%. The quarterly factor model of GDP

does not benefit from the high frequency information that becomes available

within a quarter. Therefore the RMSE from this model is constant between

GDP release dates but drops on GDP release dates.

The mixed frequency models are re-estimated for each expansion of the

information set, and the precision of these models for the forecast horizon

T − 2 is only influenced by updated parameter values. The main benefit of

mixed frequency models comes from the incorporation of intra-quarter high

frequency information into the end-of-quarter GDP estimates. As Figure 1 in

Section 4 illustrates, the GDP predictions for horizons T − 1 and higher are

directly affected by the releases of the monthly series. The impact of this high

frequency information is then propagated to longer horizon forecasts.

As foreshadowed by the simulation results, the CTFM produces more ac-

curate forecasts than the SFMs at all horizons. Cointegration ties the series

together so that valuable high frequency information is passed to low fre-

quency forecasts through the common factors. Therefore two common stochas-

tic trends predict the evolution of the indicators more effectively than one or

two stationary factors. The transformation in the SFM removes all long-run

trend information leaving the model with a set of relatively noisy variables to

analyze. The first stationary factor quite successfully captures common cycli-

cal information, but that is not sufficient to reconstruct all the comovement

of the variables in levels. The insignificant loading of the second stationary

factor implies that it does not capture any meaningful information, and has a
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minimal effect on the forecast.

[Insert Figure 5 about here]

Figure 5 illustrates that the integrated idiosyncratic components in the

SFM with two factors are much more persistent than the idiosyncratic com-

ponents in the CTFM in Figure 4. This occurs because differencing breaks

the cointegrating link among the variables, and as a consequence the SFM is

unable to fully extract the common stochastic trends in the data. In the SFM

some of the signal leaks out to the idiosyncratic components, which do not

contribute to the transfer of information from high frequency indicators to low

frequency ones. By making use of a linear combination of the two common

stochastic trends, the CTFM is better able to capture and transfer the relevant

high frequency information from the monthly variables to the quarterly one.

Because the CTFM incorporates the intra-period information more accurately

than is possible in the misspecified SFM, the forecasts based on the former

model have a lower RMSE than forecasts that are based on the latter.

6 Conclusion

We analyze the forecasting performance of small mixed frequency factor mod-

els when the observed variables share stochastic trends. We allow for multiple

common factors to capture potential cointegrating relationships among the lev-

els of the observed variables. Our comparison of mixed and single-frequency

models demonstrates that incorporating high frequency information into the
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model results in more accurate forecasts. However, in the presence of common

stochastic trends the mixed frequency stationary one-factor models that are

frequently used to extract coincident indicators are misspecified. The elimina-

tion of common stochastic trends leads to inefficient information transfer from

high frequency indicators to low frequency ones. The forecasting performance

of the stationary factor model suffers even if the model contains the same num-

ber of common factors as the data generating process. The common-trends

factor model outperforms the stationary factor model at all forecast horizons,

and the improved forecast performance as measured by the root mean squared

forecast error tends to be strongest for nowcasts and short horizon forecasts.

Our results illustrate that when the constituent indicators are cointegrated,

modeling common stochastic trends improves short horizon forecasts.
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Table 1: Data generating process parameters

Scenarios
Parameter ALP AHP BLP BHP CLP CHP
λ1
M1

0.6 0.6 1.0 1.0 1.0 1.0
λ1
M2

0.4 0.4 0.0 0.0 1.0 1.0
λ1
Q 0.5 0.5 0.5 0.5 1.0 1.0

λ2
M1

0.4 0.4 0.0 0.0 0.0 0.0
λ2
M2

0.6 0.6 1.0 1.0 0.0 0.0
λ2
Q 0.5 0.5 0.5 0.5 0.0 0.0

γ1 = γ2 = γ3 0.1 0.7 0.1 0.7 0.1 0.7
Note: In the analyzed scenarios only the displayed parameters vary. The remaining

parameters are held fixed at the following values: For each idiosyncratic component

the loading parameter is set to g1 = g2 = g3 = 1, and the standard deviation

of each idiosyncratic shock is set to σ1 = σ2 = σ3 = 0.02. The two stochastic

trends are drifting with speed µ1 = 0.015 and µ2 = 0.005, respectively, and have

autocorrelated errors with persistence ρ1 = 0.85 and ρ2 = 0.75, and variance σ1 =

0.01 and σ2 = 0.005, respectively.
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Table 2: % Reduction in RMSE: CTFM Compared to SFM and QCTFM

Scenarios

Horizon A1
LP A2

LP AQLP B1
LP B2

LP BQ
LP C1

LP CQ1
LP

T -2 -33% -32% -40% -30% -32% -39% -31% -36%
T -1 -32% -32% -37% -29% -32% -37% -31% -36%
T -27% -28% -29% -23% -27% -29% -29% -32%
T+1 -37% -35% -52% -31% -36% -52% -34% -58%
T+2 -30% -31% -42% -26% -31% -43% -29% -49%
T+3 -21% -26% -28% -16% -25% -30% -23% -36%
T+4 -23% -25% -41% -16% -26% -42% -19% -48%
T+5 -18% -23% -32% -13% -23% -33% -16% -38%
T+6 -10% -20% -20% -6% -20% -20% -12% -25%
T+7 -14% -22% -31% -8% -22% -32% -12% -37%
T+8 -11% -21% -24% -7% -21% -25% -11% -29%
T+9 -6% -21% -15% -3% -20% -15% -9% -20%
T+10 -10% -23% -25% -5% -23% -25% -10% -29%

Horizon A1
HP A2

HP AQHP B1
HP B2

HP BQ
HP C1

HP CQ
HP

T -2 -17% -17% -20% -13% -14% -19% -16% -17%
T -1 -17% -17% -18% -13% -14% -18% -15% -16%
T -14% -16% -13% -10% -12% -13% -16% -15%
T+1 -25% -28% -33% -20% -24% -33% -26% -38%
T+2 -21% -27% -27% -18% -23% -28% -23% -33%
T+3 -16% -25% -18% -13% -20% -20% -22% -26%
T+4 -20% -29% -31% -15% -24% -32% -22% -40%
T+5 -16% -28% -23% -13% -23% -25% -20% -32%
T+6 -10% -25% -15% -7% -20% -16% -16% -23%
T+7 -13% -30% -26% -9% -24% -26% -16% -34%
T+8 -10% -29% -19% -8% -24% -21% -14% -27%
T+9 -6% -27% -12% -4% -22% -13% -13% -19%
T+10 -9% -32% -21% -6% -27% -22% -13% -28%
Note: The superscripts 1, 2, and Q in the scenario designations indicate comparison

of the CTFM to the SFM with 1 and 2 factors, and the QCTFM, respectively. The

table shows the percentage difference in RMSE for the CTFM forecasts relative

to the forecasts produced by the SFM with 1 and 2 factors, and the QCTFM.

The results are based on 1000 repetitions for each horizon. The forecast horizon

is measured in months relative to the forecast date, T . The Diebold and Mariano

(1995) test indicates that the improvements are significant at the 5% level for each

scenario at all horizons.
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Table 3: Indicators
Sampling Freq. Reporting Lag

Real Personal Income, RPI monthly 1 month
Real Personal Consumption Expenditures, PCE monthly 1 month
Real Gross Domestic Product, GDP quarterly 3 months
Note: All series were obtained from the Federal Reserve Economic Database (FRED).

Table 4: Augmented Dickey-Fuller tests
∆yt = α + βyt−1 +

∑m
k=1 θt∆yt−k + εt ; H0 : β = 0

1 + β̂ ADF t-test p-value
RPI 0.999 -2.169 0.218
PCE 0.999 -1.836 0.363
GDP 0.997 -2.304 0.171
Note: Column 1 lists the series tested for a unit root; column 2

presents the estimated AR(1) parameter; column 3 the the ADF

t-test for the null hypothesis β = 0; and column 4 presents the

marginal significance level for the ADF t-test. The lag-length, m

is determined by testing down from the maximum of 14 lags.

Table 5: Cointegration rank tests

Rank Eigenvalue Trace test p-value λ-max test p-value
r = 0 0.110 37.815 0.004 24.860 0.012
r = 1 0.043 12.955 0.117 9.445 0.257
r = 2 0.016 3.511 0.061 3.511 0.061
Note: Column 1 lists the null hypothesis of zero, at least one, and at least

two cointegrating vectors; column 2 the eigenvalue; column 3 the trace test;

column 4 the marginal significance level for the trace tests; column 5 the

maximum eigenvalue test; and column 6 the marginal significance level for

the maximum eigenvalue test. The test is evaluated with an unrestricted

constant, and the lag-length is determined by the Schwarz-Bayesian Infor-

mation Criterion.
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Table 6: Estimation Results: Common-Trends Factor Model
λ1,RPI λ1,PCE λ1,GDP λ2,RPI λ2,PCE λ2,GDP

1.000 0.721∗ 0.781∗ 0.000 1.000 0.792∗

µ1 φ1 σ1 µ2 φ2 σ2

0.005∗ 0.703∗ 0.005∗ 0.001∗ 0.737∗ 0.002∗

γRPI γPCE γGDP σRPI σPCE σGDP
0.449∗ 0.258∗ 0.940∗ 0.008∗ 0.007∗ 0.009∗

Note: Maximum likelihood parameter estimates for CTFM contain-

ing two common stochastic trends with drift (µ) and autocorrelated

errors (φ). ∗ denotes significance at the 5% level. To satisfy identi-

fication requirements, λ2,RPI is fixed at 0, and λ1,RPI , λ2,PCE , and

the loading parameters of the idiosyncratic components are fixed

at 1.

Table 7: Estimation Results: Stationary Factor Models

One-Factor Model
λ1,∆RPI λ1,∆PCE λ1,∆GDP

1.000 0.876∗ 2.046∗

φ1 σ1

0.795∗ 0.246∗

γ∆RPI γ∆PCE γ∆GDP σ∆RPI σ∆PCE σ∆GDP

-0.245∗ -0.401∗ -0.130∗ 0.895∗ 0.891∗ 1.204∗

Two-Factor Model
λ1,∆RPI λ1,∆PCE λ1,∆GDP λ2,∆RPI λ2,∆PCE λ2,∆GDP

1.000 0.883∗ 2.053∗ 0.000 1.000 0.519
φ1 σ1 φ2 σ2

0.766∗ 0.263∗ 0.000 0.050
γ∆RPI γ∆PCE γ∆GDP σ∆RPI σ∆PCE σ∆GDP

-0.199∗ -0.290∗ -0.114∗ 0.891∗ 0.886∗ 1.192∗

Note: Maximum likelihood parameter estimates for SFM. ∗ denotes sig-

nificance at the 5% level. To satisfy identification requirements, λ2,∆RPI

is fixed at 0, and λ1,∆RPI , λ2,∆PCE , and the loading parameters of the

idiosyncratic components are fixed at 1.
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Table 8: GDP Forecasting Results: Comparison of CTFM, SSFM and RW Model

RMSE % Difference
Horizon CTFM 2SFM 1SFM QM CT/2S CT/1S CT/QM
T -2 48 54 54 68 -11%∗ -11%∗ -29%∗

T -1 48 56 57 68 -15%∗ -14%∗ -28%∗

T 51 57 58 68 -12%∗ -11%∗ -25%∗

T+1 72 83 83 126 -14%∗ -14%∗ -43%∗

T+2 79 94 94 126 -15%∗ -16%∗ -37%∗

T+3 89 98 98 126 -9%∗ -9%∗ -29%∗

T+4 111 125 124 182 -10%∗ -11%∗ -38%∗

T+5 126 142 141 182 -10%∗ -11%∗ -30%∗

T+6 141 149 148 182 -5%∗ -5%∗ -22%∗

T+7 158 172 170 233 -7%∗ -8%∗ -32%∗

T+8 174 190 189 233 -8%∗ -8%∗ -25%∗

T+9 192 199 197 233 -3% -3% -17%∗

T+10 206 220 218 280 -6%∗ -6%∗ -26%∗

Note: RMSE of GDP forecasts (units: US $ Billion), and percentage difference between the

RMSE of GDP forecasts. The forecast horizon is measured relative to the forecast date, T .

The CTFM is compared to SFMs with one and two factors, and to a quarterly two-factor

model. Marginal significance of the Diebold and Mariano (1995) test at the 5% level is

indicated by ∗.
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Figure 1: Illustration of the expansion of the information set and the monthly
forecast horizons for the quarterly variable relative to the forecast date T .
In Qi,T+j, i indicates the quarter for which the forecast is being made, and
j indicates the forecast horizon in months. The figure captures the passage
of time from the end of March (top panel) through the end of June (bottom
panel) in monthly increments.
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Figure 2: Root mean squared forecast error by scenario, for all considered
horizons for the CTFM, SFM with one and two factors, and the QCTFM.
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Figure 3: Standardized log-levels of real personal income, real personal con-
sumption expenditures, and real gross domestic product, and their decomposi-
tion into common stochastic trends and stationary idiosyncratic components.
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Figure 4: Standardized log-differences of real personal income, real personal
consumption expenditures, and real gross domestic product, and their decom-
position into two stationary common factors and idiosyncratic components.
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Figure 5: Integrated idiosyncratic components from the SFM with two factors.
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