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Abstract 

 

A number of studies have estimated how much energy conservation is achieved by providing 
households with real-time information on energy use via in-home displays. However, none of 
these studies tell us why real-time information changes energy-use behavior. We explore the 
causal mechanisms through which real-time information affects energy consumption by 
conducting a randomized-control trial with residential households. The experiment disentangles 
two competing mechanisms: (i) learning about the energy consumption of various activities, the 
“learning effect”, versus (ii) having a constant reminder of energy use, the “saliency effect”. We 
have two main results. First, we find a statistically significant treatment effect from receiving 
real-time information. Second, we find that learning plays a more prominent role than saliency in 
driving energy conservation. This finding supports the use of energy conservation programs that 
target consumer knowledge regarding energy use. 
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1. Introduction 

 

Reducing energy use is now a major policy goal in most developed and many developing 

countries. In-home displays (IHDs) have received increasing attention as an effective tool to 

encourage energy conservation. IHDs are designed to give electricity consumers detailed, 

real-time information about electricity use and cost. A number of studies have estimated how 

much energy conservation is achieved by providing households with IHDs (as opposed to 

monthly electricity bills, which provide information about aggregate usage and charges). 

However, none of these studies tell us why IHDs change energy-use behavior. In other words, 

what are the causal mechanisms through which these devices are working? Is it because the 

devices update consumers’ beliefs about how much power different appliances use? Is it because 

IHDs make energy use more salient as residents are constantly reminded of their energy 

consumption? While the first hypothesis implies the presence of a “learning effect,” the second 

hypothesis implies the presence of a “saliency effect”.    

 

This paper represents an initial attempt to disentangle the mechanisms through which 

real-time information affects energy consumption behavior by conducting a field experiment. 

The goal is to push the research agenda on real-time information beyond reduced-form questions 

of “Does the device have any effect?” towards a deeper structural understanding of “Why is this 

device affecting behavior?” This may have critical policy implications. For example, if learning 

about the energy consumption of various household devices is the reason why real-time 

information induces energy conservation, then this advocates for a particular suite of energy 

efficiency policies (e.g., educational outreach, labeling electronic appliances with their energy 
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consumption, etc.). On the other hand, if the real benefit of having IHDs is as a constant “nudge” 

or reminder, then this suggests a very different set of energy efficiency policies (e.g., finding the 

best medium and timing to remind consumers about their energy consumption). Furthermore, 

understanding why IHDs work in a real field setting should help in the design of future IHDs.  

 

In this paper, we present the results of a randomized-control experiment with 65 

residential households in the same condominium complex in a large US city. In the experiment, 

we randomly assign households into one control and two treatment groups. After installing 

data-collecting devices for each household, the control group has their energy consumption 

monitored but does not receive an IHD during the experimental period. The two treatment 

groups have data-collecting devices installed, and then receive IHDs but with one critical 

difference. The “Saliency” treatment group has access to their IHDs for the entire duration of the 

experiment, while the “Learning” treatment group loses access to their IHDs in the last month of 

the experimental period. By comparing how electricity use changes over time and across the 

three groups, we are able to (i) estimate the amount of electricity conservation attributable to 

IHDs, and (ii) disentangle whether learning about energy use is sufficient to sustain energy 

conservation or whether having a constant reminder of energy use is necessary for energy 

conservation.  

 

Although our sample size is small, our simple experimental design illustrates lessons that 

are extremely relevant to the rollout of IHDs. In line with previous studies, we observe an 

average reduction in electricity consumption between 0 and 11%, depending on the time of day. 

This effect gets weaker over time (again in line with previous studies) and the reductions appear 
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to be driven primarily by learning and not by saliency effects. The rest of this paper is organized 

as follows: Section 2 provides a brief literature review, Section 3 explains the conceptual 

framework, Section 4 presents the experimental design, Section 5 summarizes our main findings 

and Section 6 concludes.  

 

2. Literature Review 

 

Many studies have used experiments to better understand energy conservation programs 

(see Abrahamse et al. (2005) for a review). An obvious method to achieve energy conservation is 

to provide economic incentives to reduce energy consumption (Winett et al., 1978; Midden et al., 

1983; Petersen et al., 2007; Mizobuchi and Takeuchi, 2012). A number of empirical studies have 

estimated how detailed information on power use can contribute to energy conservation (Sexton 

et al., 1989; Wood and Newborough, 2003; Delmas et al., 2013). Building on Sexton et al. 

(1989), Matsukawa (2004) measured the effect of information (provided by a continuous-display, 

electricity-use monitoring device) on residential electricity demand in a field experiment with 

319 randomly selected households. Subjects were randomly assigned to either a control or 

treatment group. Only the treatment group members had free provision and installation of 

monitors. Results demonstrated that monitor usage contributed to a modest reduction in 

electricity consumption. In terms of possible causes for the small effect, the author argues that 

subjects might have found the monitors difficult to operate and that updates in electricity use 

were not frequent enough (subjects received hourly not real-time information). 

 

Faruqui, Sergici and Sharif (2010) review a number of pilot programs worldwide that 
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focus on the energy-conservation impacts of IHDs as well as alternative electricity rate structures. 

Among the programs that tested the effect of IHDs on electricity consumption (where the test 

period ranged from three months to two and a half years), the average reduction in energy use 

was 7%, and the largest reduction observed was 13%. Fischer (2008) reviews a number of 

studies on IHDs, most of which have been published in the psychology literature. IHDs tend to 

achieve energy conservation gains between 5 and 12%. Houde et al. (2013) find average 

reductions of 5.7% but this effect only lasts for four weeks. The common theme in the literature 

is that in-home displays encourage people to reduce their energy consumption by 5-10%.  

 

As Gillingham et al. (2009) explain, the literature on energy efficiency has debated the 

existence and extent of the “energy efficiency gap,” i.e., a “significant difference between 

observed levels of energy efficiency and some notion of optimal energy use” (p.602). Consumers’ 

lack of information about energy efficiency and “behavioral failures”—systematic biases in 

consumer decision making that lead to underinvestment in energy efficiency (or energy 

overuse)—are the identified factors behind the energy efficiency gap. Consumers often lack 

sufficient information about how much energy different appliances use and how much they cost 

to run.1 Even when information is available, processing detailed information about the energy 

prices of each appliance and figuring out optimal electricity use would be challenging and costly 

for consumers. As for behavioral failures, bounded rationality (cognitive constraints in 

processing information to optimize consumers’ energy use) and heuristic decision-making (i.e., 

non-optimal decision making that reduces the cognitive burden of decision making) have been 

discussed in the literature as reasons for the energy efficiency gap. All of these hypotheses could 

                                                   
1 Newell and Siikamaki (2013) examine the effect of energy conservation labeling when households purchase 
electronic devices. They found that information on the device’s costs had more of an effect than information on 
energy use in kWh or carbon emissions. 
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explain why energy over-use may result when residents have access to only aggregate, monthly 

electricity use data. Introducing IHDs may enable consumers to make more optimal energy use 

decisions; a common assumption in the literature is that optimal energy use implies less energy 

use, i.e., behavioral biases are unidirectional. There is some evidence to support this assumption: 

a recent study (Attari et al., 2010) of an internet-based survey finds that people tend to 

underestimate the energy used by household appliances (e.g., air conditioners) and the amount of 

energy savings from efficiency-enhancing activities (e.g., switching to high-efficiency light 

bulbs).    

 

Yates and Aronson (1983) found that consumers attach disproportionate weight to more 

psychologically vivid and observable factors, often called the saliency effect. Fischer (2008) 

reviews IHD projects that vary the frequency with which consumers receive information about 

electricity use; she finds that more frequent feedback results in larger energy savings. This is 

suggestive of a saliency effect but could also be explained by learning. There has been little work 

to distinguish whether one hypothesis is more plausible than another. Dietz (2010) argues that 

“many [policies] to promote household energy efficiency are not based on an understanding of 

how residents think about and make decisions regarding energy efficiency.” As Gillingham et al. 

(2009) note, “the empirical literature testing behavioral failures specifically in the context of 

energy decision making is very limited.” In the context of energy conservation, the mechanisms 

through which consumers reduce energy use when real-time information is provided have not 

been explored experimentally.2 This paper is a first step in that exploration. 

                                                   
2 In a recent experimental paper, Jessoe and Rapson (2014) explore how households with IHDs respond to 
electricity price changes relative to households without. Households with IHDs are more responsive to price changes 
and survey evidence suggests that this is due to learning and not saliency. The focus of Jessoe and Rapson (2014) is 
on differential price responses and not on why IHDs change behavior. Our experimental design is unique in that we 
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3. A Model of Energy Use with Learning and Salience 

 

Gillingham et al. (2009) list prospect theory, bounded rationality, and heuristic decision 

making as the three primary behavioral models applied in the context of energy efficiency. The 

following model incorporates bounded rationality to try to explain why real-time information 

might induce energy conservation. In particular, the model describes residential energy users’ 

decisions when there are costs to collecting information about energy use and to implementing 

energy efficiency improvements. This framework allows us to highlight the role of saliency and 

learning as mechanisms through which real-time information influences household energy 

conservation. 

 

3.1. Assumptions 

  

For simplicity, we take a household as a single decision maker who makes energy-use 

decisions for ! rounds over a typical utility billing period (say a month). Let !! ≥ 0 be the 

household's consumption of “energy services” in round !. Let ! ≥ 0 be the consumption of the 

numeraire over a month. The household faces a flat energy charge of ! > 0 per unit, and 

allocates its given monthly income ! > 0 over the consumption of “energy” !! ≥ 0,!!!!! =

1,2,… ,! and the numeraire.3 Energy service !!  and the purchase of energy !!  have the 

following relationship: 

                                                                                                                                                                    
observe behavior after IHDs are removed. Reassuringly, both studies suggest that learning is more important than 
saliency.   
3 We abstract away from the block rate structure typically observed with utility pricing. 
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 !! = !!!! , 

 

where !! > 0 represents the units of energy that the household requires to realize a unit of 

energy service. 

Though ! could be large (it includes the sum of the number of times each appliance is 

turned on and off), for simplicity let ! = 2. The household's utility ! is a function of its 

consumption of energy services and the numeraire: 

 

 ! !!, !!,! = ! !! + !(!!)+ !!!!!!for!!all!!(!!, !!,!) ≥ !!0!. 

 

The specification of a quasilinear utility function allows us to abstract away from the income 

effect on energy service consumption.4 We assume no discounting within a billing period. Let 

! ! = !!!!
!!! , with ! = 2 for a concrete illustration.5 If the household is informed of the 

relationship between !! and !!, then the household’s utility-maximizing problem over a billing 

period is given by: 

 

 max
!!!,!

!! !! + !(!!)+ !!! 

 !subject!!to!!!!!!(!! + !!)+ ! ≤ !,!!!!!! = !!!! ,!!!!! = 1,2. 

 

                                                   
4 In a recent empirical study on the residential electricity demand in California, Reiss and White (2005), the 
estimated income elasticity ranged between -0.01 and +0.02. The authors argue that “the income effects are mostly 
statistically insignificant and negligible as a practical matter.”    
5 Existing estimates of the price elasticity of residential electricity consumption (i.e., 1/!) fall below 1; see, for 
example, Espey and Espey (2004) and Fell et al. (forthcoming). 
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With ! !! = −!!!!, the demand for energy services is given by !!∗(!) = !
!!!

!
! while the 

demand for energy is !!∗(!) = !!
!

!
! : the demand for energy is increasing in the energy 

requirement parameter !!. The maximized value satisfies:  

 

 !∗ ≡ !
!!!

!
! + !

!!!

!
! + ! − (!!!)

!
! − (!!!)

!
!. 

 

 Suppose now that the household is not informed of the value of !!. As argued in the 

literature (e.g., Simon 1956, Gillingham et al. 2009), we assume that it is costly for the 

household to (i) collect information about !! and then (ii) attempt to improve energy efficiency 

by applying !! to the utility maximization problem. Let !! be the cost of identifying !!, and 

!! be the cost of processing the information for utility maximization. While !! would include 

the opportunity cost of going over the monthly energy bill in detail and conducting research to 

check the power usage of each appliance in the house, !! would include the cognitive cost of 

remembering this information and using it to implement an optimal energy use plan. 

 

Suppose that, without knowing the values of !!, the household uses !ℎ units of energy 

to derive a unit of energy services in each round. We assume !ℎ > !! for all !: the household 

consumes more units of energy to derive a unit of energy services. Furthermore, in the absence 

of real-time information (i.e., every round in the model’s context) about the energy requirement, 

it is assumed that the requirement parameter is the same across rounds. The uninformed 

household without information acquisition then solves: 

 



 10 

 max
!!!,!

!! !! + !(!!)+ !!! 

subject to !" + ! ≤ !, ! = !ℎ(!! + !!). 

 

The demand for energy satisfies !!!(!) = !ℎ

!

!
!, which is larger than !!∗(!) in all rounds given 

any price level. The maximized value is given by: 

  

 !! ≡ 2 !
!!ℎ

!
! + ! − 2(!!ℎ)

!
!. 

 

Note that !∗ − !! ≥ 0. The household will not acquire information and implement energy 

conservation if the gains are smaller than the cost: !∗ − !! < !! + !!. 

 

3.2. Learning and saliency 

  

When real-time information is given free of charge, the household does not have to pay 

for !! to realize the values of !!, and can now realize energy efficiency if !∗ − !! > !!. 

Furthermore, the cognitive cost required to remember information and how to use it is lowered 

from !! to !!! so energy efficiency is realized if !∗ − !! > !!!. The process of learning 

allows the household to continue to optimize consumption when access to real-time information 

is terminated. After being exposed to real-time information (and losing access to it), the cost of 

information acquisition becomes smaller, with !!′ < !! . In addition, !!! returns to !!. Let 

! ∈ [0,1] represent the extent (or productivity) of learning. Assume the household's energy 

requirement after the learning process is:  
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 !!(!) ≡ !!! + (1− !)!ℎ. 

 

When ! = 1, learning allows the household to implement the energy savings in the case of full 

information, whereas with ! = 0, learning is not effective. Let  

 

 !!(!) ≡ !
!!!(!)

!
! + !

!!!(!)

!
! + ! − (!!!(!))

!
! − (!!!(!))

!
! 

 

be the maximum value after learning with productivity !. The household makes use of learning 

and conserves energy if !!(!)− !!′ − !! > !!. The higher the learning productivity ! and the 

lower the cost of collecting information under learning !!′, the more likely this inequality holds. 

The above conceptual framework reveals that whether the learning or saliency effect 

prevails depends on each household's characteristics regarding energy efficiency decisions: the 

costs of information acquisition (!! ,!!′), the cost of information processing (!! ,!!′) and the 

extent of learning (!). If ! is large and !!′ is small enough, then the household would continue 

conserving energy after losing access to real-time information (because of learning). If !!′ is 

close enough to !!, then the household would continue conserving energy, because saliency is 

not that important. However, if !!!  is close to !!  and !  is small (it’s hard to acquire 

information and learning is weak), then households will return to their old habits after losing 

their IHDs. Likewise, if !!! is small, households with IHDs will continue to have lower levels 

of electricity use relative to those who had them removed, even if learning is strong.  
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4. Experimental Design 

 

4.1 Hypothesis Tests 

 

This research aims to identify the mechanisms through which real-time information 

reduces energy consumption. The experiment consists of three periods: Periods 0, 1, and 2, each 

lasting for about 30 days. Electricity measurement (and recording) devices are installed in all 

apartments at the beginning of Period 0. Period 0 is the baseline period with no IHDs for all 

groups. Our experimental design has one control and two treatment groups: the control group has 

no real-time information about their energy consumption during the experimental period (just 

their usual monthly bill), whereas the households of the two treatment groups receive IHDs (i.e., 

real-time information) at the beginning of Period 1. Period 1, which lasts for about 30 days, 

should be enough time for any learning to occur in the treatment groups. At the beginning of 

Period 2, IHDs are then removed from the Learning treatment group, while the other treatment 

group, the Saliency treatment group, continues to have IHDs for the duration of Period 2. Energy 

consumption information for all groups is still being recorded in each period by the recording 

devices, not the IHDs.  

 

This experimental design allows us to identify the primary effect of receiving real-time 

information. Since there is existing evidence of people reducing their energy consumption if they 

receive real-time information, our first testable hypothesis is the following: 

 

Hypothesis 1: Real-time information reduces residential households’ energy consumption. 
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[L1+S+RL1+L2<0] 

 

We will test this hypothesis by comparing the control group and the treatment groups’ 

electricity use before and after receiving the devices, i.e., Period 0 compared to Periods 1 and 2 

(see Table 1). The econometric model we use follows the preferred specification in Houde et al. 

(2013), who ran a very similar experiment using the same devices. Next, we move to identify 

why people reduce their energy consumption. To test this deeper question, we examine behavior 

over three experimental periods (Table 1). Our second testable hypothesis is the following:  

 

Hypothesis 2: Real-time information induces energy savings by causing households to learn 

more about their individual energy use. [L1+RL1+L2<0] 

 

In order to test Hypothesis 2, we will examine if the Learning group’s electricity 

consumption in Period 2 is the same as the control group’s electricity consumption in Period 2 (if 

RL1<0 then this implies that L1+RL1+L2<0). If there is a difference between the control group 

and the learning treatment group, then the difference comes from behavior changes induced by 

the IHDs that persist once the IHDs have been removed. We have labeled this the remaining 

learning effect (RL1) but this may also be due to the formation of good habits. We will use 

results from an exit survey to determine whether RL1 is due to learning or habit formation. In 

particular, we test if households in the Learning group are still just as informed as the Saliency 

group about the energy consumption of various appliances, even though households in the 

Learning group have not had access to an IHD for a month. However, if RL1=0, then this 

indicates no remaining learning effect. Our third testable hypothesis is the following: 
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Hypothesis 3: Real-time information induces energy savings by making energy use more salient. 

[S<0]  

 

In Period 2, the households who belong to the Learning group do not have IHDs, which means 

they do not receive any real-time information. That is, they are not constantly reminded of their 

electricity consumption by the IHD. In order to test Hypothesis 3, we will examine if the 

Learning group’s electricity consumption in Period 2 is equal to the Saliency group’s electricity 

consumption in Period 2. If there is no difference, Hypothesis 3 is rejected (L2+S=0 in Table 1). 

That is, saliency does not matter for reducing energy consumption and, furthermore, there is no 

learning effect in Period 2.6  

 

4.2 Experiment procedure 

 

In order to conduct the proposed field experiment, we recruited households at a 

condominium complex to voluntarily participate in the experiment. In order to give the residents 

incentives to participate in the experiment, the residents were notified in advance that they would 

be able to keep the installed IHDs free of charge after the end of the experiment. Eventually, 65 

households voluntarily participated in the experiment. Unfortunately, the devices only recorded 

accurate data over the entire experimental period in 58 out of the 65 households.7 In terms of 

housing units, they are all fairly homogeneous: virtually all units have an identical, 2-bedroom 

                                                   
6 Note that, based on the existing literature and our theoretical setup, we are assuming that the learning and saliency 
effects are negative (<0), i.e., they reduce energy consumption if they have any effect.  
7 One subject in the saliency treatment group moved out during the experiment – around the end of Period 1 - so we 
only use this household for the testing of Hypothesis 1. 
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floor plan, identical room designs, electricity circuits, and lighting structures. All households 

have the same basic appliances: oven, refrigerator, water heater, etc. Based on survey responses, 

we found that almost all households have a TV set and desktop computer. Households pay their 

electricity bills by themselves. As stated earlier, we randomly assigned households to three 

groups: one control and two treatments. 

 

 Table 2 summarizes the description of our subject households based on survey 

responses. The average age in a household was 33.53, and each household had an average of 

2.69 people (including 0.86 children). In each household, there were 1.48 income earners on 

average. Each household was occupied approximately 16.19 hours per day on weekdays and 

17.79 hours per day on weekends. There were no statistically significant differences between 

treatment groups in terms of these important determinants of energy use. There may, of course, 

be unobserved differences between households so all of our regression models include household 

fixed effects. 

 

We used two main devices for this experiment: an electricity measurement device and an 

IHD. The electricity measurement device was installed in each unit’s circuit breaker panel at the 

beginning of the experiment, and we also conducted an initial survey at this point. After we 

confirmed that the recording devices were working well, we distributed IHDs to the two 

treatment groups. IHDs provide users with real-time information about their energy consumption 

(in both kWh and in dollars).8 The IHD is portable, so that households using it can easily walk 

around, switch various devices on and off, and identify how much electricity various devices 

                                                   
8 The IHD we used is marketed as the “TED 5000” by The Energy Detective (http://www.theenergydetective.com/). 



 16 

consume.9 Overall, the experiment lasted for approximately 90 days, depending on the exact 

date of measurement device installation and final debriefing. There was minimal temperature, 

climatic or precipitation changes over this three month period.  

 

5. Analysis and Results 

 

First of all, we summarize the average electricity consumption by group and by period. 

Figure 1 presents average consumption per hour (normalized so that each treatment group 

consumes 1 unit in Period 0). In the control group, the average hourly consumption increases 

from Period 0 to Period 1, and then decreases from Period 1 to Period 2. In the Learning and the 

Saliency groups, average consumption decreases noticeably in Period 1. Consumption continues 

to decrease from Period 1 to Period 2 but only slightly for the Saliency group. Overall, both 

treatment groups reduce their consumption from Period 0 to Period 2 (8% for Learning and 4% 

for Saliency).  

 

Energy saving behaviors could be very different at different times of the day.  Therefore, 

we also consider average hourly consumption in kWh by each treatment group in each period at 

different times of the day. We focus on four time periods: morning (6-9am), daytime 

(10am-5pm), evening (6-9pm), and night (10pm-5am). Table 3 presents average electricity 

consumption for these four time periods across treatments and across experimental periods. Most 

of the interesting changes in behavior occur when people are at home so we focus on those time 

periods. We start with the morning, 6-9am (Figure 2). In the control group, the average 

                                                   
9 The cost of using an IHD itself is extremely small ($0.08 per month), so we assume that there is no significant 
difference between the control and treatments groups due to having the IHD plugged in.  
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consumption decreases slightly from Period 0 to Period 1, and then increases from Period 1 to 

Period 2 to a higher level than Period 0. In the Learning group, the average consumption 

decreases noticeably from Period 0 to Period 1, then increases from Period 1 to Period 2, but is 

still lower than Period 0. In the Saliency group the trend is the same, the average consumption 

drops dramatically from Period 0 to Period 1, then rebounds from Period 1 to Period 2, but is still 

lower than Period 0.  

 

Next, we look at 6-9pm (right hand side of Figure 2). In the control group, the average 

consumption increases from Period 0 to Period 1, and then decreases from Period 1 to Period 2, 

to end up lower than Period 0. In contrast, in the Learning group, the average consumption 

decreases from Period 0 to Period 1, and then decreases again from Period 1 to Period 2. In the 

Saliency group, the average consumption decreases from Period 0 to Period 1, and then 

decreases again from Period 1 to Period 2. Overall, both treatment groups reduce their 

consumption from Period 0 to Period 1, whereas the control group increases their consumption 

during this time frame. This suggests that the IHDs are having a stronger and more persistent 

effect on behaviors in the evening. This is perhaps due to households having more flexibility to 

change their behavior in the evening compared to the rush to get ready for work and school in the 

morning. 

 

Figures 1 and 2 certainly suggest that the IHDs are having an effect on behavior. We now 

use formal regression analysis to empirically estimate the effect of having an IHD on electricity 

consumption. Table 4 presents the results from least squares regressions estimating the following 

model:  
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log Consumptioni, t =α +β HavingIHDi,t +γ i +ηt + ei,t,  

 

where log Consumptioni, t  is the log of average hourly electricity usage on each day for 

household i and the dummy HavingIHDi,t  takes the value 0 for those who do not have IHDs 

and the value 1 for those who have IHDs on that day. The other variables are household fixed 

effects (!!), day fixed effects (!!) and a standard error term. This specification is the same as the 

most preferred specification in Houde et al. (2013). Because all subjects in our sample live in the 

same area, the weather variables used in Houde et al. (2013) are not considered here; the time 

fixed effect captures any weather differences across days. As for the time horizon, we consider 

all Periods and then just Periods 0 and 1. We estimate our main regression separately for the four 

different time periods during the day (6-9am, 10am-5pm, 6-9pm, and 10pm-5am) and for the 

whole day (12am-11pm). In Table 4, the coefficient on the IHD effect, !, is presented. It is 

negative and statistically significant for the 6-9am time period (all Experimental Periods and just 

Periods 0 & 1), and for the 6-9pm time period (all Experimental Periods). The rest of the 

coefficients are insignificant. These results are almost identical to those found in Houde et al. 

(2013): strong effects in the morning and evening but mixed results overall. 

 

 In addition to the model used by Houde et al. (2013), we can also estimate the IHD effect 

using a standard Difference-In-Differences (DID) model, and by dropping the household fixed 

effects. Tables 5 and 6 show the OLS results of estimating the following DID model: 

 

log Consumptioni, t =α Treatment i,t +γ Periodi,t +β Treatment i,t*Periodi,t +ηt + ei,t,  
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In Table 5, the dummy Treatment i,t takes the value 1 for those who belong to the two treatment 

groups, and the value 0 for those who belong to the control group. The dummy Periodi,t  takes 

the value 1 for Period 1, and the value 0 for Period 0. The interaction term Treatment i,t*Periodi,t  

takes the value 1 for those who belong to the two treatment groups and are in Period 1, and the 

value 0 otherwise. In the Table 6, the dummy Treatment i,t  takes the value 1 for those who 

belong to the Saliency group, and the value 0 for those who belong to the control group. The 

dummy Periodi,t  takes the value 1 for Period 1 or 2, and the value 0 for Period 0. The 

interaction term Treatment i,t*Periodi,t  takes the value 1 for those who belong to the Saliency 

group for Period 1 or 2, and the value 0 otherwise. 

 

Finding 1: Receiving real-time information leads to energy conservation during peak load hours 

(6-9am and 6-9pm) but the overall daily effect is not statistically significant. 

 

 The interpretation of these results is as follows: through having the IHD, households with 

IHDs were able to adjust their consumption down during times of the day when they were at 

home and using a large amount of electricity. In contrast, the results of the 10pm-5am and the 

10am-5pm measurements imply that subjects did not change (or might have even slightly 

increased) their consumption when they were out of the house or asleep. Therefore, we conclude 

that having an IHD has an effect on electricity usage in the morning and the evening. We also 

ran the above regressions without household fixed effects but including a suite of controls. Our 

main results are unchanged. The only controls that turn out to be statistically significant are the 

number of people in a household (which is positively correlated with energy consumption) and a 
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dummy variable for having a water hear timer (which is negatively correlated with energy 

consumption). 

 

 One of the most striking findings in Houde et al. (2013) is that the effect of having an IHD 

declines rapidly over time. To estimate whether we also observe a “decreasing IHD effect”, we 

estimate the following model for our 6-9am and 6-9pm samples: 

 

log Consumptioni, t =α +β HavingIHDi,t +δ Expday*HavingIHDi,t +γ i +ηt + ei,t,  

 

where the coefficients and variables have the same interpretation as before with Expday 

representing a daily time trend starting on the first day that households received an IHD. The 

results are presented in Table 7. We see that, just like Houde et al. (2013), the effect of the IHD 

in the morning is getting weaker over time. With each additional day, the reduction in energy use 

gets smaller and smaller. Interestingly, we also observe a time trend at 6-9pm but in the opposite 

direction: the effect of the IHD appears to get stronger over time. Both sets of results strongly 

suggest that there is a temporal component to the ways in which IHDs change behavior. The 

various effects gradually build up or fade away over time. 

 

 Next, we move to a deeper investigation. Based on the previous literature (Houde et al., 

2013), we test for both constant learning (and saliency) effects and declining learning (and 

saliency) effects. Before trying to identify the causal mechanisms, we review our two hypotheses, 

the learning effect and the saliency effect. The learning hypothesis states that people reduce their 

energy usage when they receive real-time information due to better knowledge of how different 



 21 

devices consume electricity. The saliency hypothesis is that people reduce their energy usage due 

to being constantly reminded about their consumption. 

 

We start by assuming that the learning and saliency effects are constant through time. 

The first panel of Table 8 shows the OLS results of estimating the following model: 

 

log Consumptioni, t =α +β RL1i,t +γ i +ηt + ei,t  

 

where the dummy RL1i,t  takes the value 1 for those who had an IHD in Period 1 and are 

currently in Period 2. We test the remaining learning effect in Period 2 (RL1) by comparing the 

control group with the Learning group in Period 0 and Period 2. Based on this test, there is no 

statistical evidence of a strong learning effect.  

 

 The second panel of Table 8 shows the OLS results of estimating the following model: 

 

log Consumptioni, t =α +β (L2+S)i,t +γ i +ηt + ei,t  

 

where the dummy (L2+S)i,t  takes the value 1 for those who still have an IHD in Period 2. We 

test the existence of a saliency effect in Period 2 by comparing the learning group with the 

saliency group in Period 0 and Period 2. Based on this test, there is no strong evidence of a 

saliency effect, except during 6-9pm, where the effect is statistically significant at the 10% level.  

 

 The third panel of Table 8 shows the OLS results of estimating the following model: 
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log Consumptioni, t =α +β1(L1+S)i,t +β2RL1i,t +β3(L2+S)i,t +γ i +ηt + ei,t  

 

where the dummy (L1+S)i,t takes the value 1 for those who had an IHD in Period 1, and are 

currently in Period 1. The dummy RL1i,t takes the value 1 for those who had an IHD in Period 1, 

and are currently in Period 2, which is a common dummy variable for the treatment groups. The 

dummy (L2+S)i,t takes the value 1 for those who had an IHD in Period 2, and are currently in 

Period 2. We test these effects by comparing all groups in Periods 0, 1 and 2. This confirms our 

early finding of a combined Learning and Saliency effect but doesn’t provide any statistical 

evidence to disentangle between the two. Interestingly, the daily effect (i.e., averaging over all 

hours of the day) is now statistically significant at the 10% level, suggesting IHDs reduce overall 

consumption by 3.5% in the first month of use. 

 

Finding 2: There is no strong time-invariant RL1 or (L2+S) effect. 

 

So far, we have assumed time-invariant behavioral effects. However, such effects might 

decrease over time as was demonstrated in Houde et al. (2013) and our earlier analysis. In order 

to test whether learning and/or saliency effects exist but are declining over time, we conducted a 

series of regressions with time interactions. Table 9 summarizes the results. The model of the 

first panel of Table 9 is as follows: 

 

log Consumptioni,t =α +β RL1i,t +δ Expday*RL1i,t +γ i +ηt + ei,t  
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where the dummy RL1i,t  takes the value 1 for those who had an IHD in Period 1, and are in 

Period 2 on that day, and the value 0 otherwise. The Expday*RL1i,t  is an interaction term, 

which interacts RL1i,t  with a daily time trend. A positive coefficient on the interaction term 

indicates a declining learning effect. In Table 9, we find a large statistically significant effect for 

the 6-9am time period. Having exposure to the IHD in Period 1 reduces consumption by 17% but 

this effect declines 0.72 percentage points per day.  

 

 The second panel of Table 9 shows the OLS results of estimating the following model: 

 

log Consumptioni, t =α +β (L2+S)i,t +δ Expday*(L2+S)i,t +γ i +ηt + ei,t  

 

where the variables have the same interpretation as before. We are testing the existence of a 

saliency effect in Period 2 by comparing the learning group with the saliency group in Period 0 

and Period 2. We don’t observe a very strong effect, either in terms of magnitude or statistical 

significance. The third panel of Table 9 shows the OLS results of estimating the following 

model: 

 

log Consumptioni, t =α +β1(L1+S)i,t +δ1(L1+S)*Expdayi,t +β2RL1i,t +...
...+δ2RL1*Expdayi,t +β3(L2+S)i,t +δ3(L2+S)*Expdayi,t +γ i +ηt + ei,t

 

 

where the variables have the same interpretation as before. We test for these effects by 

comparing all groups in Periods 0, 1 and 2. We find all three effects ((L1+S), RL1 and (L2+S)) 

are statistically significant but the saliency effects in period 2 actually increases energy 
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consumption. In summary, we find evidence for a learning effect that is decreasing over time. 

We fail to find strong support for the saliency hypothesis, especially after a few weeks of having 

the IHD. In fact, we find (L2+S)>0. Our results are therefore roughly consistent with RL1<0 but 

not S<0. 

 

Finding 3: We observe a declining learning effect but no saliency effect. 

 

As a further test of the learning effect, at the end of the experiment, we surveyed 

households about the electricity consumption of various devices. on each device. Figure 3 

summarizes the results of the survey. Note that the Learning group households have not had 

access to an IHD for over a month at this point and control households have not received their 

IHD yet. The figure clearly demonstrates that households have learned something relative to the 

control group and there does not appear to be any differences between the beliefs of the Saliency 

group and the beliefs of the Learning group. For three out of the four devices, the Learning group 

is actually closer to the actual energy consumption compared to the Saliency group. Although 

this represents stated beliefs and not actual behavior, it strongly corroborates our earlier findings 

that the learning effect appears to be stronger than the saliency effect. Furthermore, one obvious 

confound in our experimental design is that we cannot strictly disentangle learning (updating 

beliefs) from habit formation (changing behavior and then sticking with it) but there is little 

support in our data for habit formation. As evidence of this, energy-saving behavior does not 

persist over time but accumulated knowledge does appear to persist. 

 
6. Conclusion 
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Building on the existing literature that studies whether IHDs reduce residential electricity 

consumption, this paper explored the causal mechanisms behind the effect of receiving real-time 

information on electricity consumption. In particular, we attempted to disentangle whether the 

effect is because information enables households to learn about their energy consumption or if it 

is because in-home displays make energy-use salient by constantly reminding households of their 

energy consumption. The first main result of our randomized-control field experiment is that 

those who received real-time information about their electricity consumption reduced their 

consumption in the morning and the evening but not at other times of the day. Furthermore, the 

effect appears to diminish over time. These findings are almost identical to those in a very 

similar study (Houde et al., 2013). In addition, we also provide new evidence on the mechanism 

behind the energy-conservation effects of real-time information: we find support that this effect 

is driven by learning effects and not by saliency effects. This finding suggests that 

energy-conservation policies that target learning (e.g., educational outreach, labeling electronic 

appliances with their energy consumption) might be more cost-effective than the expensive 

process of installing devices that provide a constant reminder of energy use. Our study does not 

rule out the existence of saliency effects but they do not stand out. For example, the Saliency 

group does not have lower consumption in Period 2 and they do not outperform the Learning 

group on the exit survey.  

 

To the extent that households in the condominium complex respond to IHDs differently 

from the average US household, a simple extrapolation of the findings from this study to wider 

contexts may be misleading. The sample size constrained the number of treatments that we could 

implement without making the size of each treatment group too small. Introducing further 
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variations in the kinds of information that each target group receives would make for an 

interesting follow-up. One drawback to the current design is that we cannot strictly disentangle 

learning from habit formation but there is little support in our data for habit formation (for 

example, energy-saving behavior does not persist over time) but accumulated knowledge does 

appear to persist. We believe that disentangling such effects would provide further policy 

implications for how best to design information programs to enhance long-term energy 

conservation in an efficient manner. 
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Figures and Tables 

 

Figure 1. Average electricity consumption by group and by period 

 

 

 

Figure 2. Average electricity consumption in the morning and in the evening  
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Figure 3. Survey Responses to the Question: How Much Energy Does This Device 

Consume?  

 

Notes: Each column represents the mean survey response of how much each device consumes in terms of Kwh by 
treatment group. Bars represent estimated standard errors and the horizontal dashed lines represent how much each 
device actually consumes. 
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Table 1. Experimental Design and Potential Effects 

Group Period 0 Period 1 Period 2 
Control No Information No Information No Information 
  (No effect) (No effect) (No effect) 
Learning treatment No Information Receive Information No Information 
  (No effect) (L1 and S) (RL1) 
Saliency treatment No information Receive Information Receive Information 
  (No effect) (L1 and S) (RL1, L2 and S) 

Notes: “No Information” means that the residents in the corresponding group receive no information beyond their 
monthly electricity bills. “Receive information” means that they receive in-home displays, which provide additional 
real-time information. The potential treatment effects are in parentheses. "L1" means the learning effect occurring in 
Period 1, "S" means the saliency effect, "L2" means the learning effect occurring in Period 2, "RL1" means the 
remaining learning effect from Period 1. 
 

 

Table 2. Characteristics of household participants 

  Overall Control Learning Saliency 
Age of Each Household 33.53 35.51 31.68 33.58 
  (1.39) (2.95) (2.34) (1.97) 
# of People in Each Household 2.69 2.33 3.09 2.64 
  (0.15) (0.25) (0.30) (0.22) 
# of Children (under 18 years old) 0.86 0.60 1.27 0.68 
  (0.12) (0.17) (0.23) (0.17) 
# of Income Earners 1.48 1.40 1.41 1.64 
  (0.07) (0.11) (0.11) (0.14) 
Hours at Home on Weekdays 16.19 14.64 16.25 17.61 
  (0.51) (0.89) (0.91) (0.80) 
Hours at Home on Weekends 17.79 16.76 17.80 18.75 
  (0.54) (1.04) (0.97) (0.76) 
Observations 58 21 22 22 

Notes: Standard errors in parentheses. 
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Table 3. Average Electricity Consumption (in kWh) 

 

Treatment Control Learning Saliency 

Period 0 1 2 0 1 2 0 1 2 

Mean 6am-9am 0.585 0.580 0.588 0.500 0.473 0.492 0.619 0.556 0.610 

s.e. 0.061 0.056 0.059 0.051 0.037 0.043 0.074 0.062 0.061 

Mean 10am-5pm 0.401 0.404 0.390 0.385 0.389 0.342 0.401 0.404 0.391 

s.e. 0.042 0.042 0.043 0.035 0.037 0.030 0.039 0.038 0.035 

Mean 6pm-9pm 0.671 0.682 0.644 0.791 0.743 0.723 0.663 0.648 0.604 

s.e. 0.074 0.072 0.071 0.093 0.084 0.082 0.066 0.051 0.044 

Mean 10pm-5am 0.286 0.296 0.299 0.243 0.251 0.243 0.264 0.257 0.262 

s.e. 0.032 0.032 0.035 0.025 0.021 0.021 0.022 0.018 0.020 

Mean Daily  

(per hour) 0.442 0.443 0.437 0.432 0.418 0.398 0.438 0.421 0.420 

s.e. 0.039 0.038 0.040 0.035 0.034 0.032 0.037 0.031 0.031 

No. of Households 17 18 18 13 18 19 17 20 20 
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Table 4. IHD Regression Results 

 

 (1) (2) (3) (4) (5) 

Observations 6AM-9AM 10AM-5PM 6PM-9PM 10PM-5AM 12AM-11PM 

All Periods -.0461* 0.0116 -.0730** 0.0085 -0.0189 

 (0.0278) (0.0249) (0.0301) (0.0193) (0.0145) 

Periods 0 & 1 -.112*** 0.0102 -0.0567 0.0131 -0.0254 

 (0.0425) (0.0372) (0.0448) (0.0289) (0.0222) 

Notes: Standard errors in parentheses, * p < .10, ** p < .05, *** p < .01. In the regressions, each model includes 
household and time fixed effects, and a constant. 
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Table 5. DID Regression Results for Periods 0 & 1 

 

 

(1) (2) (3) (4) (5) 

 

6-9AM 10AM-5PM 6-9PM 10PM-5AM Daily (per hour) 

      Treatment -0.0102 -0.0189 0.122 -0.114 -0.0175 

 

(0.146) (0.134) (0.135) (0.117) (0.104) 

Period -0.0349 -0.0150 0.0954 0.117 0.0362 

 

(0.118) (0.105) (0.127) (0.0804) (0.0629) 

Treat*Period -0.108** 0.0111 -0.0667 -0.000214 -0.0294 

 

(0.0442) (0.0388) (0.0468) (0.0301) (0.0231) 

Constant -0.0884 -0.614*** -0.890*** -1.706*** -0.652*** 

 

(0.519) (0.184) (0.161) (0.357) (0.104) 

      Observations 2,807 2,827 2,852 2,804 2,852 

# households 56 56 56 56 56 

Notes: Standard errors in parentheses, * p < .10, ** p < .05, *** p < .01. 
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Table 6. DID Regression Results for All Experimental Periods 

 (Control and Saliency Groups) 

 

(1) (2) (3) (4) (5) 

 

6-9AM 10AM-5PM 6-9PM 10PM-5AM Daily (per hour) 

      Treatment 0.0809 0.0312 0.0993 -0.0631 0.0168 

 

(0.179) (0.133) (0.157) (0.121) (0.129) 

Period -0.0478 0.0103 0.229 0.253*** 0.0996 

 

(0.134) (0.122) (0.151) (0.0924) (0.0705) 

Treat*Period -0.0947** -0.0271 -0.0724 -0.0212 -0.0451* 

 

(0.0457) (0.0412) (0.0508) (0.0316) (0.0237) 

Constant -0.105 -0.542*** -0.808*** -1.705*** -0.686*** 

 

(0.505) (0.205) (0.185) (0.349) (0.116) 

      Observations 3,057 3,067 3,056 3,055 3,056 

# households 38 38 38 38 38 

Notes: Standard errors in parentheses, * p < .10, ** p < .05, *** p < .01. 
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Table 7. IHD Regression Results Interacted With a Time Trend 

 

  
(1) (3) 

Observations 
 

6AM-9AM 6PM-9PM 

 
IHD -0.104** -0.0462 

All periods 
 

(0.0427) (0.0467) 

 
IHD*Expday 0.00173* -0.000801 

  
(0.000963) (0.00107) 

    Periods 0 &1 IHD -0.108* 0.0321 

  
(0.0572) (0.0608) 

 
IHD*Expday -0.000269 -0.00506** 

  
(0.00219) (0.00234) 

Notes: Standard errors in parentheses, * p < .10, ** p < .05, *** p < .01. In the regressions, each model includes 
household and time fixed effects, and a constant. 
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Table 8. Constant Saliency and Learning Effects 

 

Comparison:   (1) (2) (3) (4) (5) 
Group name 
(Period) 

 
6-9AM 10AM-5PM 6-9PM 10PM-5AM 

Daily (per 
hour) 

Control vs 
Learning RL1 -0.0655 0.00161 0.0641 -0.0158 -0.002 

(Period 0 and 2)   (0.0539) (0.0473) (0.0592) (0.0392) (0.0255) 

 
Constant -0.286 -0.705*** -0.960*** -1.719*** -0.710*** 

    (0.481) (0.16) (0.137) (0.35) (0.059) 

  Observations 1571 1579 1574 1571 1574 

  R-squared 0.076 0.189 0.065 0.041 0.08 

  
Number of 
households 37 37 37 37 37 

Learning vs 
Saliency (L2+S) 0.0173 -0.0306 -0.1000* 0.00325 -0.0288 

(Period 0 and 2)   (0.0496) (0.0477) (0.0544) (0.0368) (0.0245) 

  Constant -1.236*** -0.627*** -0.695*** -1.299*** -0.560*** 

    (0.12) (0.188) (0.133) (0.0891) (0.0601) 

  Observations 1588 1594 1590 1590 1590 

  R-squared 0.131 0.176 0.068 0.046 0.085 

  
Number of 
households 39 39 39 39 39 

All groups (L1+S) -0.126*** -0.00209 -0.0594 0.00288 -0.0354* 
(Period 0, 1 and 
2)   (0.0408) (0.0364) (0.0438) (0.0284) (0.0211) 

 
RL1 -0.0623 -0.0198 0.0467 -0.00217 -0.00983 

 
  (0.0487) (0.0436) (0.0527) (0.0339) (0.0254) 

  (L2+S) 0.0345 0.0235 -0.0787* 0.0147 -0.000938 

    (0.0387) (0.0349) (0.0425) (0.0270) (0.0204) 

  Constant -0.0921 -0.618*** -0.818*** -1.778*** -0.659*** 

    (0.491) (0.147) (0.117) (0.342) (0.0562) 

  Observations 4,398 4,410 4,401 4,396 4,401 

  R-squared 0.098 0.147 0.044 0.025 0.052 

  
Number of 
households 57 57 57 57 57 

Notes: Standard errors in parentheses, * p < .10, ** p < .05, *** p < .01. 
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Table 9. Time-Varying Saliency and Learning Effects 

Comparison:   (1) (2) (3) (4) (5) 
Group name 
(Period) 

 
6-9AM 10AM-5PM 6-9PM 10PM-5AM 

Daily (per 
hour) 

Control vs 
Learning RL1 -0.170** 0.0326 0.0824 -0.0852 -0.0383 
(Period 0 and 2)   (0.0754) (0.0665) (0.0839) (0.0548) (0.0361) 

 
RL1*Expday 0.00724** -0.00217 -0.00131 0.00481* 0.00259 

    (0.00366) (0.00328) (0.00423) (0.00266) (0.00182) 
  Constant -0.290 -0.704*** -0.960*** -1.722*** -0.710*** 
    (0.480) (0.160) (0.137) (0.350) (0.0590) 
  Observations 1,571 1,579 1,574 1,571 1,574 
  R-squared 0.079 0.189 0.065 0.043 0.081 

  
Number of 
households 37 37 37 37 37 

Learning vs 
Saliency (L2+S) 0.0999 -0.0503 -0.0927 0.0331 0.00662 
(Period 0 and 2)   (0.0691) (0.0668) (0.0768) (0.0512) (0.0346) 
  (L2+S)*Expday -0.00556* 0.00135 -0.000498 -0.00201 -0.00243 
    (0.00324) (0.00319) (0.00372) (0.00239) (0.00168) 
  Constant -1.236*** -0.627*** -0.695*** -1.299*** -0.560*** 
    (0.120) (0.188) (0.133) (0.0891) (0.0600) 
  Observations 1,588 1,594 1,590 1,590 1,590 
  R-squared 0.133 0.176 0.068 0.047 0.086 

  
Number of 
households 39 39 39 39 39 

All groups (L1+S) -0.116** 0.0254 0.0166 0.0235 0.00209 
(Period 0, 1 and 2)   (0.0551) (0.0494) (0.0597) (0.0384) (0.0287) 
  (L1+S)*Expday -0.000586 -0.00151 -0.00422* -0.00118 -0.00209* 
    (0.00207) (0.00186) (0.00225) (0.00144) (0.00109) 
  RL1 -0.164** 0.0192 0.0452 -0.0770 -0.0488 

 
  (0.0720) (0.0648) (0.0789) (0.0501) (0.0380) 

 
RL1*Expday 0.00702* -0.00293 -0.000453 0.00505** 0.00251 

 
  (0.00368) (0.00335) (0.00417) (0.00255) (0.00201) 

 
(L2+S) 0.122* 0.0102 -0.0591 0.0495 0.0413 

 
  (0.0659) (0.0595) (0.0727) (0.0458) (0.0350) 

 
(L2+S)*Expday -0.00607* 0.00107 -0.00111 -0.00241 -0.00286 

    (0.00364) (0.00333) (0.00412) (0.00253) (0.00198) 
  Constant -0.0933 -0.618*** -0.818*** -1.779*** -0.659*** 
    (0.491) (0.147) (0.117) (0.342) (0.0561) 
  Observations 4,398 4,410 4,401 4,396 4,401 
  R-squared 0.099 0.147 0.045 0.026 0.053 
  Number of id 57 57 57 57 57 

Notes: Standard errors in parentheses, * p < .10, ** p < .05, *** p < .01. 

 

 


