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Abstract

We evaluate the short term forecasting performance of methods

that systematically incorporate high frequency information via covari-

ates. Our results indicate that including timely intra-period data into

the forecasting process results in significant gains in predictive ac-

curacy compared to relying exclusively on low frequency aggregates.
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lysts, we o↵er practical implementation guidelines to facilitate their

adoption.
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1 Introduction

Where tourism is a key component of the local economy, firms, government

agencies, and other organizations often update their predictions of tourism

activity within a quarter. Inevitably, several stages of the forecasting pro-

cess involve frequency conversions. The underlying dataset usually contains

economic indicators released with di↵erent lags and sampled at various fre-

quencies. Tourism agencies use short term forecasts to plan their operations

to satisfy multi-period performance targets. Government organizations feed

high frequency tourism forecasts into macroeconomic models that evolve at a

lower frequency. Such practical issues arising in the forecasting process lead

to two questions: (1) how can data released with di↵erent lags and frequen-

cies be combined in the generation of multi-period forecasts, and (2) what

benefits can be derived from such combinations.

Forecasters often turn to classical methods to predict industry perfor-

mance (see for example Athanasopoulos et al., 2011; Dwyer et al., 2012).

Methods, like Exponential Smoothing (ES) and Autoregressive Integrated

Moving Average (ARIMA) models, only use the history of the variable of in-

terest for prediction. Others, such as Autoregressive Distributed Lag (ADL)

models, go a step further by incorporating a set of explanatory variables.

A common feature of these models is that they all operate at a single fre-

quency. For example, a typical ADL model may predict quarterly tourist

arrivals using its own lags and a set of explanatory variables, all indexed at
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the quarterly frequency. If some of the explanatory variables are available

at a higher frequency, such as monthly or daily, they must be aggregated

to the quarterly frequency before they can be included in the model. The

disadvantage of such aggregation is that it may discard valuable information,

especially at the end of the sample when only a partial quarter, say one or

two months, of data is available.

Some forecasters make adjustments to their near-term forecasts to incor-

porate information from incomplete periods. This process can be cumber-

some and, by definition, subjective. Several approaches have been recently

developed that avoid such limitations by directly using high frequency re-

gressors to predict a low frequency variable of interest. This is a rapidly

growing area or research with over fifty studies published on the topic in the

last decade (see for example Camacho et al., 2013). While our paper is the

first one to introduce some of the new methods to the tourism literature,

macroeconomic forecasting studies have already shown that they often im-

prove predictions for the current period (nowcasting). An additional benefit

of a model-based approach to incorporate high frequency information is the

streamlining of the forecasting process, with near-term predictions generated

through a mechanical process, as opposed to a series of subjective adjust-

ments. It is no surprise then that these tools are quickly gaining popularity

in applied research: among others, the Federal Reserve Banks of Atlanta and

Philadelphia publish nowcasts of economic activity on their websites.

Direct transfer of information across frequencies can be accomplished in a
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number of ways. The Mixed Data Sampling (MIDAS) regression of Ghysels

et al. (2004, 2007) uses high frequency regressors to predict a low frequency

variable of interest. The coe�cients in a MIDAS model are determined non-

linearly by a small set of hyperparameters. This solves the parameter pro-

liferation problem that can occur in the case of a large frequency mismatch

between the predictors and the variable of interest, but it means that the

regression can no longer be estimated by Ordinary Least Squares (OLS).

Rather than estimating the hyperparameters nonlinearly, Foroni et al.

(2015) introduced an Unrestricted Mixed Data Sampling (U-MIDAS) regres-

sion that only requires OLS estimation. They show that when the frequency

mismatch is small, as in the case of using monthly data to predict a quar-

terly series, U-MIDAS models tend to outperform MIDAS models. Factor

models based on the Kalman filter have also been used in prediction (see for

example Fuleky and Bonham, 2015), but are beyond the scope of our study.

Their main purpose is the estimation of an unobserved overall business cycle

variable and its fluctuations. While, Bai et al. (2013) found that the Kalman

filter based methods and the MIDAS models analyzed in our paper have

similar forecasting performances, the implementation of the former is more

complex.

There is a large body of literature that evaluates the performance of

mixed-frequency methods in real-world applications. Most studies show that

high frequency variables improve predictive accuracy. They include the sur-

vey by Camacho et al. (2013) investigating a variety of short-term forecasting
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methods, and the study by Jansen et al. (2012) evaluating eleven di↵erent

models to forecast real GDP for several European countries. Nonetheless,

these authors point out that the performance di↵erences across mixed fre-

quency specifications are marginal, and while monthly predictors increase

the accuracy of nowcasts when the dependent series is measured at the quar-

terly frequency, the gains in performance appear to be muted for forecasts

one or two quarters ahead. We know of only one tourism related study deal-

ing with a similar topic. Bangwayo-Skeete and Skeete (2015), found that

weekly Google search data help to predict monthly tourist arrivals to certain

Caribbean destinations. Finally, some studies do not find a significant im-

provement in predictive accuracy from the use of high frequency covariates.

Baumeister et al. (2015) note that forecast precision depends on whether the

high frequency data provides a useful signal or simply introduces additional

noise.

We evaluate several classical and modern forecasting methods in a tourism

setting to assess their practical advantages and disadvantages. Specifically,

we use monthly regressors to produce nowcasts and one-quarter ahead fore-

casts of tourist arrivals to Hawaii, and, in a separate exercise, we predict quar-

terly earnings in the accommodation and food services industry in Hawaii.

Our results are largely in line with the existing literature. We find that,

relative to a low frequency baseline model, incorporating high frequency in-

formation results in an overall improvement in predictive accuracy, both for

nowcasting and one-period ahead forecasting. However, di↵erences in accu-
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racy across mixed frequency models tend to be small. Therefore, while prac-

titioners should not ignore high frequency information, they should use those

methods that can be applied to the particular problem at the least cost. Our

results also indicate that gains in predictive accuracy are the greatest when

the high frequency information is contemporaneous. Consequently, mixed-

frequency methods are most valuable when the high frequency regressors are

available with relatively short publication lags.

The layout for the rest of the paper is as follows. In Section 2, we in-

troduce the mixed frequency models used in our analysis. In Section 3, we

describe our dataset, apply the models to Hawaii’s tourism sector, and discuss

our results. Our concluding remarks are in Section 4.

2 Methods

Autoregressive distributed lag (ADL) models benefit from multiple sources

of information: contemporaneous and lagged observations on the variable

of interest and its predictors. In contrast, pure time series approaches—

such as exponential smoothing and ARIMA models—only consider lags of

the variable of interest and neglect the information in associated variables,

while contemporaneous multiple regressions ignore any dynamics. An ADL

model nests both of these building blocks and is therefore a more general and
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versatile tool for forecasting. A typical ADL model can be written as

y

t

= ↵ + �(L)y
t�1 + �(L)x

t

+ ✏

t

, for t = � + 1, � + 2 . . . , (1)

where y
t

and x

t

are the variable of interest and a predictor, respectively. The

lag polynomials, �(L) =
P

ymax

i=0 �

i

L

i and �(L) =
P

xmax

j=0 �

j

L

j, have lengths

ymax and xmax whose optimal values can be determined using standard

model selection criteria. Lags of the predictors are accommodated in the

model by applying a � = dmax(ymax+1, xmax)e o↵set to the initial period,

where dze is the ceiling operator producing the smallest integer not less than

z. Additional regressors can be included at the cost of further notational

complexity.

A forecast produced on forecast date T for a horizon h is based on the

estimated relationship between the response variable and the hth-and-greater

lags of the predictors in equation (1). Reporting delays can result in miss-

ing observations for recent periods in a vintage T dataset, a phenomenon

sometimes called the “ragged edge” problem. This problem can be solved by

accounting for the lag of the most recent observation of each variable relative

to time T . Denoting this lag by �
y

and �
x

for y and x, respectively, we

obtain a forecast for horizon h by evaluating

ŷ

T+h

= ↵̂ + �̂(L)y
T��

y

+ �̂(L)x
T��

x

, (2)

with coe�cients previously estimated in a regression that maintains equiva-
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lent lags of the predictors relative to the response variable

y

t

= ↵ + �(L)y
t�h��

y

+ �(L)x
t�h��

x

+ ✏

t

, for t = � + 1, � + 2 . . . , (3)

where the � o↵set applied to the initial period is determined by the maximum

lag of the regressors. Note, the time subscript denotes the reference period

for a particular observation and not the release date.

Equation (2) uses the relationship captured between the left and right

hand sides of equation (3) to map predictor information available at time

T into a forecast for horizon h. The model can also accept forward looking

indicators by letting ��
x

represent the lead time. For example, a predictor

containing information about the period ahead of time t can be incorporated

into equations (2) and (3) as x
T+1 and x

t�h+1, respectively.

ADL models can be extended to map high frequency information into

forecasts of low frequency variables. In the following we describe forecasting

models that combine data sampled at di↵erent frequencies.

2.1 Mixed Frequency Models

Mixed frequency models are typically used when the variable of interest

evolves at a low frequency while the predictors are observed at a high fre-

quency. To illustrate, let y
t

and x

t

denote two economic indicators sampled

at the quarterly and monthly frequency, respectively. Let us initially assume

that there is no delay in the reporting of new information, with the data re-
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lease occurring immediately at the end of the given period. This assumption

helps us simplify the exposition, but we will relax it later.

The time index t refers to the end of a particular period. Without loss of

generality (see Fuleky, 2012), we set the unit of time to a quarter, so that it

matches the frequency of the response variable. Consequently, the monthly

observations are indexed with t = 1
3 ,

2
3 , 1, 1

1
3 , . . ., while the quarterly ones

with t = 1, 2, . . ., and L

1/3 and L represent a monthly and a quarterly lag,

respectively.1 The relationship between the quarterly response variable, its

own lags, and the lags of the monthly predictors can be estimated using a

simple mixed frequency regression

y

t

= ↵ + �(L)y
t�1 + �(L1/3)x

t

+ ✏

t

, for t = � + 1, � + 2 . . . , (4)

where �(L) =
P

ymax

i=0 �

i

L

i and �(L1/3) =
P

xmax

j=0 �

j

L

j/3. The time increments

of unit length indicate that the rows of the data set are a quarter, or three

months, apart. Equation (4) illustrates that the quarterly regressand can

be directly related to its own lags and the lags of the monthly regressors.

Therefore it is unnecessary to aggregate the monthly regressors beforehand

to match the quarterly frequency of the regressand.

The forecast date T can fall at the end of any month. Hence, forecasts

can be produced for horizons h = {0, 13 ,
2
3 , 1, 1

1
3 , . . .}, where the first three

1The fractional lag operator, L1/3, is only applied to monthly indicators. For example,
while x2 is the value of the monthly indicator in the last month of quarter 2, L1/3

x2 =
x1 2

3
and L

2/3
x2 = x1 1

3
are the values of x in the second and first months of quarter 2,

respectively.
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specify predictions for the current quarter and are usually called “nowcasts”.

A forecast for a certain horizon h necessitates a relationship between the re-

sponse variable and the hth-and-greater lags of the predictors in equation (4).

Using the coe�cients estimated in such a regression and the data available at

the forecast date T , we obtain a forecast for horizon h, ŷ
T+h

, by evaluating

ŷ

T+h

= ↵̂ + �̂(L)y
T�� + �̂(L1/3)x

T

, (5)

where � denotes the lag of the most recent quarterly observation that is

available as of time T . For example, if the forecast date is at the end of the

first or second month of the quarter, then � is 1
3 or 2

3 , respectively. If the

forecast date coincides with the end of the quarter, then � = 0.

Let us now relax the assumption that data is released immediately at the

end of a particular period. Denoting the release lag by �
y

and �
x

for y and

x, respectively, we obtain a forecast for horizon h by evaluating

ŷ

T+h

= ↵̂ + �̂(L)y
T��

y

+ �̂(L1/3)x
T��

x

, (6)

with coe�cients previously estimated in a regression that maintains equiva-

lent lags of the predictors relative to the response variable

y

t

= ↵+�(L)y
t�h��

y

+�(L1/3)x
t�h��

x

+ ✏

t

, for t = �+1, �+2 . . . . (7)

As in the case of the single-frequency ADL model, this framework can also
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accept forward looking predictors by letting ��
x

represent the lead time.

Foroni et al. (2015) called the model described above an unrestricted

MIDAS, or UMIDAS, model. Because the lag-structure of equation (7) is

unconstrained, it potentially requires the estimation of a large number of pa-

rameters. To avoid parameter proliferation, we consider various constraints

on the lag-polynomials �(L) and �(L1/3). Specifically, we examine the per-

formance of mixed frequency models under the following restrictions:

Autometrics-based model selection relies on the automatic model se-

lection features of the PcGive software (see Hendry and Krolzig, 2004)

to identify an optimal set of predictors and their lags. Autometrics uses

a wide variety of diagnostic tools to simplify a general unconstrained

model.

Non-overlapping predictors are obtained by separating highly correlated

regressors with similar information content based on their availability at

time T . The regressor with the most recent observation is incorporated

into the model with lags up until the period for which an observation

for another regressor is available. This second regressor is incorporated

into the model with lags up until the period for which an observation

for yet another regressor is available, and so on. Such lag structure

implied by data availability is more parsimonious than using all series

in parallel.

MIDAS of Ghysels et al. (2007) eliminates parameter proliferation by
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defining �(L1/3) as an exponential Almon lag polynomial

�(L1/3
, ✓) = �0(✓)L

0/3 + �1(✓)L
1/3 + . . .+ �

ymax

(✓)Lxmax/3
, (8)

where

�

j

(✓) =
e

✓1j+✓2j
2

P
xmax

j=0 e

✓1j+✓2j
2 (9)

so that the estimated values of only two hyper-parameters, ✓1 and ✓2,

determine the distribution of weights along the lag polynomial. Be-

cause the hyper-parameters enter the model nonlinearly, they can not

be estimated by ordinary least squares, and we have to rely on other

estimation techniques, such as the maximum likelihood or generalized

method and moments estimators.

2.2 Forecasting Methods Based on Aggregates

The various flavors of MIDAS models described above take into account high

frequency information contained in the explanatory variables. In contrast,

conventional models tend to lack the flexibility to e�ciently incorporate this

information into forecasts. We can gauge the impact of high frequency in-

formation on forecast precision by comparing the two types of models. The

simplest way to generate a quarterly forecast is to apply a fourth order au-

toregressive, or AR(4), model to quarterly data. Some variant of this model

usually serves as a benchmark in the ranking of various forecasting meth-

ods. However, a quarterly AR(4) model does not take into account either
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explanatory variables or monthly information available within a quarter.

A partial solution to the limitations of a quarterly AR(4) model is a↵orded

by a bridge, consisting of two steps (see also Schumacher, 2014). In the first

step, an autoregressive model is used to iteratively forecast the values of the

monthly regressors for the remainder of the current quarter, and the monthly

values within each quarter are aggregated. In the second step, a quarterly

explanatory regression is estimated from historical data, and then evaluated

with projected quarterly values of the regressors.

If, in addition to the predictors, the variable of interest is also available

at the monthly frequency, then predictions for the current quarter and be-

yond can be generated by high frequency equivalents of the AR and MIDAS

models. In particular, single frequency AR and ADL models can be applied

to monthly data, and subsequently the monthly forecasts can be aggregated

to the quarterly frequency. In our empirical illustration, we will compare the

forecasting performance of all methods described above that are feasible.

3 Empirical Examples

Our goal is to demonstrate the impact of high frequency information on the

accuracy of nowcasts and forecasts. We accomplish this by comparing the

mixed and single frequency models described in Section 2 in two separate

forecasting exercises. We also address two empirical issues associated with

data availability at time t: the ragged edge problem (unbalanced data set)
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and regressions with real time data (vintages).

3.1 Data

Our first application illustrates how to obtain forecasts of quarterly tourist

arrivals to the state of Hawaii using monthly tourist arrivals, monthly passen-

ger counts, and monthly airline passenger seats outlook. Although historical

monthly values of tourist arrivals are available, a quarterly prediction corre-

sponds to a multi-period, or three-month, forecast. The quarterly predictions

are used, among others, to evaluate the industry’s expected performance

against a quarterly target.

Our second application illustrates how to obtain forecasts of quarterly

earnings for the accommodation and food services industry for the state of

Hawaii using the monthly consumer price index, monthly accommodation

and food services jobs, and monthly tourist days. Quarterly earnings for the

accommodation and food services industry, like tourist arrivals, is a useful

indicator on its own, but also an important component of quarterly macroe-

conomic models for Hawaii given that the accommodations and food services

industry accounts for more than 8% of Hawaii’s state GDP.

3.1.1 Application 1 - Prediction of Quarterly Tourist Arrivals

Tourists are defined as persons on arriving airline flights excluding in-transit

travelers and returning residents. The Hawaii Tourism Authority (HTA)

estimates the number of in-transit travelers and residents by surveying pas-
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Figure 1: Increase of the information set and change of forecast horizon as the forecast
date T progresses through a quarter in Application 1. � denotes the “release lag” of
quarterly tourist arrivals.

sengers on domestic flights and analyzing US Customs Declarations Forms

from international flights. HTA then calculates tourist arrivals by subtracting

non-tourists from the total passenger counts reported by airlines. Monthly

tourist arrivals estimates are released with a one month lag. Quarterly tourist

arrivals are the sum of the monthly values within a quarter.

We obtained airline passenger counts from the Hawaii Department of
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Business, Economic Development, and Tourism (DBEDT). The monthly

value of this indicator, available with a two-day lag, captures the total num-

ber of airline passengers within a month. It includes passengers that arrive on

both international and domestic flights with the exception of flights originat-

ing in Canada. Since this indicator is available almost contemporaneously,

we include it in our model to inform us about current changes in traveler

volumes.

The airline seats outlook captures the total number of scheduled seats

expected to be flown on future direct flights to Hawaii excluding charter

flights. This indicator is prepared by HTA based on data from Diio Mi flight

schedules and is available for three months ahead. Due to its forward looking

nature, the seats outlook is subject to greater uncertainty than historical

data. It tends to undergo significant revisions from one release to the next,

especially during rapid changes in airlift. For example, the January vintage

of the March seats outlook may be quite di↵erent from the February one.

Figure 1 illustrates the increasing amount of information available as the

forecast date T progresses through a quarter. At the end of January, we have

tourist arrivals for December and consequently for the fourth quarter of the

previous year, passenger counts for January, and seats outlook through April.

The forecast horizons for tourist arrivals in the first and second quarters are

h = 2
3 and h = 12

3 , respectively. To illustrate the construction of the non-

overlapping model, first consider the nowcast at horizon h = 2
3 ; it is based on

four lags of quarterly tourist arrivals in the previous year, passenger counts
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for January, and seats outlook for February and March. For the h = 12
3

forecast horizon, the non-overlapping model also uses seats outlook for April

in addition to the information used for the nowcast.

At the end of February, we have tourist arrivals for January, passenger

counts for February, and seats outlook through May. The forecast horizons

for tourist arrivals in the first and second quarters are h = 1
3 and h =

11
3 , respectively. For the nowcast at horizon h = 1

3 , the non-overlapping

model uses four lags of quarterly tourist arrivals in the previous year, tourist

arrivals for January, passenger counts for February, and seats outlook for

March. For the h = 11
3 forecast horizon, the non-overlapping model also uses

seats outlook for April and May in addition to the information used for the

nowcast.

At the end of March, we have tourist arrivals for February, passenger

counts for March, and seats outlook through June. The forecast horizons

for tourist arrivals in the first and second quarters are h = 0 and h = 1,

respectively. For the nowcast at horizon h = 0, the non-overlapping model

uses four lags of quarterly tourist arrivals in the previous year, tourist arrivals

for January, passenger counts for February and March. For the h = 1 forecast

horizon, the non-overlapping model also uses seats outlook for April, May,

and June in addition to the information used for the nowcast. By the end

of April the information set has shifted forward by a full quarter relative to

January, and our focus turns to predictions for the second and third quarter,

or horizons h = 2
3 and h = 12

3 , respectively. The analysis therefore covers
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forecast horizons between h = 0 and h = 12
3 , in

1
3 , or monthly, increments.

We construct a real time data set that contains each vintage of data. This

means that for all variables we collect unrevised historical values and subse-

quent revisions. The goal of constructing a real time data set is to replicate

the actual data that would have been available to produce a forecast at a

given time. This is especially important because of the frequent and sizable

revisions that the seats outlook series undergoes. To avoid issues related to

unit roots and seasonality, we convert levels to year-over-year growth rates.

Our sample starts in January of 2001, and we produce quasi out-of-sample

forecasts between January of 2008 and June of 2014. We estimate the model

parameters from recursive samples where the starting period is held fixed and

the ending period advances with the forecast date. The Autometrics based

model, determined by diagnostic criteria, is respecified in each iteration of

the forecasting exercise. We set the maximum lag length to 4 for quarterly

tourist arrivals (ymax = 4) and to 12 for monthly tourist arrivals, passenger

counts, and airline seats (xmax = 12). The MIDAS model also uses these

lag limits.

3.1.2 Application 2 - Prediction of Quarterly Income

Industry earnings are defined as the labor income paid out to employees and

proprietors’ of a particular industry. The US Bureau of Economic Analysis

(BEA) produces estimates of industry earnings based on a number of ad-

ministrative data sources as well as surveys and census data. We focus on
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labor income in the accommodation and food services industry, which—in

contrast to tourist arrivals—is not available at the monthly frequency. Esti-

mates are released quarterly with roughly a one quarter lag: earnings for the

first quarter are released in June, earnings for the second quarter are released

in September, and so on.
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Figure 2: Increase of the information set and change of forecast horizon as the forecast
date T progresses through a quarter in Application 2. � denotes the release lag of quarterly
labor income.

19



We use several predictors of labor income. Figure 2 illustrates the increas-

ing amount of information available as the forecast date T progresses through

a quarter. Payroll jobs for the accommodation and food services industry

in Hawaii are estimated jointly by the BLS and the Hawaii Department of

Labor and Industrial Relations (DLIR) as part of the Current Employment

Statistics program. Since the vast majority of industry earnings consist of

payments to employees, payroll jobs should provide information on changes

in earnings associated with changes in the total number of jobs. Payroll jobs

at the state level are available with a half-month publication lag.

The headline Consumer Price Index for All Urban Consumers, CPI-U, is

a US city average for all items from the US Bureau of Labor Statistics (BLS).

Industry earnings are only released in nominal dollars so it follows that the

CPI could have considerable predictive power at least for changes in earnings

associated with changes in the overall price level. While there is a consumer

price index for Honolulu, HI, this index is only available semi-annually and

with a lengthy publication lag, limiting its usefulness for producing quarterly

nowcasts. The national CPI, in contrast, is available monthly, and similarly

to payroll jobs with a short, roughly two-week, publication lag.

The accommodation and food services industry in Hawaii is heavily in-

fluenced by tourism activity, which can be captured by tourist days. Tourist

days are defined as the total number of days spent in the state by tourists

who arrive by air. Tourist days are estimated by HTA from the same surveys

and administrative sources used to estimate tourist arrivals and are released
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with the same one-month lag.

Since the publication lag on industry earnings is almost a full quarter,

industry earnings for the previous quarter are not available during the first

two months of each quarter. For example in January and February, the last

observation available for earnings is the third quarter of the previous year.

Therefore, in addition to nowcasts for the current quarter and forecasts for

the subsequent quarter, in this application we also produce backcasts for the

previous quarter.

Although in this application we have a larger sample that begins in Jan-

uary 1990, the format of the forecasting exercise largely follows the first ap-

plication. We produce predictions during the identical period ranging from

January 2008 to June 2014. The data are transformed to year-over-year dif-

ferences of log-levels, the maximum lag-length is set to four quarters and

twelve months, and we use recursive estimation, the same as in the first

application.

3.2 Results

We evaluate the forecasting performance of all methods by comparing their

Root Mean Squared Forecast Errors (RMSFE). We expect the forecast ac-

curacy to improve as the amount of useful information contained in the pre-

dictors increases.
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Table 1: Comparison of Forecasting Performance for Application 1

Forecast Nowcast

Model h = 12
3 h = 11

3 h = 1 h = 2
3 h = 1

3 h = 0
Quarterly AR 161.3 161.3 161.3 100.7 100.7 100.7
Monthly AR 153.8 139.5 129.8 80.3 41.5 26.7
Monthly ADL 73.8 78.5 73.1 35.8 22.1 10.4
Bridge 115.6 111.7 111.5 43.1 30.4 27.1
Autometrics 107.1 100.4 82.0 41.3 26.4 13.2
Non-Overlapping 96.1 84.1 75.5 57.3 27.7 13.0
MIDAS 94.2 88.4 77.9 46.0 27.5 18.4

Note: Root mean squared forecast error for each model and forecast horizon. Num-
bers in bold font represent the lowest RMSFE for a particular forecast horizon, h.

3.2.1 Application 1 - Prediction of Quarterly Tourist Arrivals

Table 1 and Figure 3 report the results for our first application. For all mod-

els, RMSFE tends to decrease as the forecast horizon shortens. For most of

the models, the largest reduction in RMSFE occurs when the forecast horizon

shrinks from h = 1 to h = 2
3 as tourist arrivals for the full previous quarter

become available. In fact, the quarterly AR model benefits from new infor-

mation only at this horizon. In contrast, the mixed frequency models take

advantage of monthly data, and therefore their precision tends to continually

improve as the forecast horizon shrinks.

Regardless of the method used to incorporate the high frequency infor-

mation, all models show clear improvement in predictive accuracy relative

to the quarterly AR model. Furthermore, a small-sample corrected Diebold-

Mariano test (Diebold and Mariano, 1995; Harvey et al., 1997) indicates that

22



Forecast Horizon (h)

R
M

SF
E

0
50

10
0

15
0

1 2/3 1 1/3 1 2/3 1/3 0 −1/3

●
●

●

●

●

●

●

Application 1: Root Mean Squared Forecast Error by Forecast Horizon

●

Quarterly AR
Monthly AR
Monthly ADL
Bridge
Autometrics
Non−Overlapping
MIDAS

Figure 3: RMSFE for each model for forecast horizons between h = 1 2
3 and h = 0.

the di↵erences between the quarterly AR model and all other models except

the monthly AR model are statistically significant. This demonstrates the

contribution of the high frequency information.

The monthly AR model is dominated by the multivariate models in al-

most all cases. The only exception is h = 0, where the monthly AR model

slightly outperforms the Bridge model, although this di↵erence is not sta-

tistically significant. This result illustrates the value of multivariate meth-

ods. The monthly AR model incorporates high frequency information about

the dependent variable and produces more accurate predictions relative to
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the quarterly AR model. But the multivariate methods go a step further

by also using high frequency information contained in a set of explanatory

variables, and consequently yield more accurate predictions than either uni-

variate model.

Among the multivariate models, the distributed lag model clearly per-

forms the best. At every forecast horizon, h, predictions from the distributed

lag model have the lowest RMSFE. This may be due to the fact that quar-

terly predictions from distributed lag models are aggregates of monthly val-

ues. The aggregation either uses an available actual monthly observation,

or a prediction for a particular month. In contrast, the mixed frequency

models use monthly variables as predictors of quarterly tourist arrivals in

a regression and no aggregation takes place. Although the use of actuals

and monthly predictions results in a slight advantage of the distributed lag

model, it is important to remember that this approach is only feasible if the

variable of interest is also available at the monthly frequency.

Across the rest of the multivariate models—essentially the mixed fre-

quency ones—there is no clear ranking. For example the MIDAS model

outperforms the Autometrics based model in all three forecasting periods,

whereas the Autometrics model outperforms MIDAS in all three nowcasting

periods. However, none of these di↵erences are statistically significant. And,

for each horizon, even the worst performing multivariate model still pro-

vides a meaningful increase in predictive accuracy relative to the quarterly

AR model. The choice of model is relatively unimportant; incorporating
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Table 2: Comparison of Forecasting Performance for Application 2

Forecast Nowcast Backcast

Model h = 12
3 h = 11

3 h = 1 h = 2
3 h = 1

3 h = 0 h = �1
3 h = �2

3
Quarterly AR 233.4 233.4 169.5 169.5 169.5 114.4 114.4 114.4
Quarterly ADL 179.4 179.4 170.3 121.7 121.7 114.9 67.8 67.8
Bridge 198.6 184.7 129.7 96.8 82.7 74.8 67.8 67.8
Autometrics 173.3 168.4 140.2 112.8 106.7 74.9 62.2 62.2
MIDAS 164.5 136.7 129.6 110.3 91.3 73.3 64.4 64.4

Note: Root mean squared forecast error for each model and forecast horizon. Num-
bers in bold font represent the lowest RMSFE for a particular forecast horizon, h.

high frequency information into the forecasting process results in a statisti-

cally significant improvement in forecasting accuracy but moving from one

method to another provides only modest gains.

3.2.2 Application 2 - Prediction of Quarterly Income

Table 2 and Figure 4 report the results for our second application. The results

for this application are largely similar to those for the first application. Again,

RMSFE declines as the forecast horizon, h, shrinks—increasing the amount

of useful information in the model results in a more accurate prediction.

The quarterly AR model ranks worst in terms of forecasting performance;

all of the models incorporating explanatory variables, at either the monthly

or quarterly frequency, outperform the quarterly AR model, except at h = 1

and h = 0 where the quarterly ADL model performance is very similarly.

In general, incorporating high frequency information through any of the

proposed methods results in a reduction in RMSFE relative to the quarterly
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Figure 4: RMSFE for each model for forecast horizons between h = 1 2
3 and h = � 2

3 .

models. However in the backcast periods, h = �1
3 and �2

3 , the high fre-

quency methods no longer provide any statistically significant improvement

in precision over the quarterly ADL model. At h = �1
3 and h = �2

3 , obser-

vations for all three months of the quarter are available for the explanatory

variables, and the quarterly ADL model incorporates that information at the

quarterly frequency. This highlights the value of examining the availability

and relevance of high frequency predictors, when considering the use of mixed

frequency forecasting methods. If the high frequency predictors contain use-

ful information, then the greater accuracy of mixed frequency methods may
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outweigh the complexity they introduce to the forecasting process; otherwise,

working at the low frequency may be preferable.

In this application, there is no model that statistically dominates all oth-

ers. At most forecast, backcast, and nowcast horizons, the MIDAS model

performs relatively well. But the only horizon where the MIDAS forecasts

statistically dominate the Bridge forecasts is at the first two forecast hori-

zons, h = 12
3 and h = 11

3 , suggesting that the latter may still be a worthy

alternative for nowcasting and backcasting. The greater nowcasting precision

of mixed frequency models relative to the quarterly ADL model illustrates

the importance of intra-period information at the end of the sample. How-

ever, the similarity of mixed frequency model performances implies that the

choice between the Autometrics and MIDAS models is less consequential.

4 Conclusion

We contribute to the existing literature in several important ways. First,

we examine a number of econometric tools that can be employed for short

term prediction of tourist arrivals. Specifically, we introduce to the tourism

literature techniques that directly incorporate high frequency information

into forecasting models. Second, for each tool, we highlight distinguishing

features and limitations that practitioners need to be aware of. Similarly to

their growing popularity in empirical macroeconomics, these techniques will

also become standard forecasting tools in tourism research. To facilitate their
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adoption, we provide practical guidelines for their implementation. Third,

we illustrate the merits of these tools in a real life setting by evaluating their

performance in forecasting tourist arrivals and labor income in a tourism

related industry in Hawaii.

Our study confirms the hypothesis that using high frequency data con-

tributes to an improvement in forecasting performance. The main benefit

of high frequency data is that it contains more timely information than low

frequency data released with a long publication lag. However, among the

models that incorporate high frequency information, the di↵erences tend to

be small and often statistically insignificant. This implies that, while practi-

tioners should take advantage of high frequency data, the particular method

used to do so is relatively unimportant. Incorporating high frequency data

into the forecasting process through any of the methods outlined is likely

to result in a substantial improvement in accuracy, whereas moving from

one method to another leads to marginal gains at best. Therefore, the opti-

mal model incorporating high frequency information may be the one that is

easiest to implement.
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