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EXECUTIVE SUMMARY

Hawaii’s largest electric utility, Hawaiian Electric Company (HECO) and its subsidiaries recently proposed a 

Time of  Use (TOU) pricing scheme for residential rates. The TOU scheme has three tiers of  prices: daytime, on-

peak, and nighttime. The proposed rates have the highest cost during the on-peak period from 5pm to 10pm. For 

Oahu, the lowest cost is at nighttime, from 10pm to 9am. The difference between high and low rates is $0.33/kWh. 

For Maui and Hawaii Island, the lowest cost is during the daytime, 9am to 5pm. The difference between high and 

low rates are $0.35/kWh and $0.50/kWh, respectively. It is not stated whether the rates will be implemented as an 

opt-in, opt-out or mandatory program. This report summarizes literature on time varying pricing for residential 

rates to inform Hawaii’s electricity stakeholders, including ratepayers and policy-makers, of  the potential impacts 

and considerations regarding the potential for TOU pricing in Hawaii. 

Using a simulation model of  consumer electricity demand coupled with historic residential electricity load data, 

we estimate the magnitude of  load-shifting potential as a result of  proposed residential TOU rates. Using estimates 

from the literature as well as a more bottom-up approach to characterizing typical household appliance usage, we 

develop three scenarios to characterize consumer responsiveness to HECO’s proposed TOU rates. Our results 

assume that all residential customers follow the new rate schedule, and thus serve as an upper-bound for actual 

impacts. We find in our scenario based on the most common literature estimates that the proposed TOU rates could 

lead to a 10% reduction for on-peak electricity usage by participating residential consumers, and increase daytime 

and nighttime consumption by 9% and 8%, respectively. The reduction in daytime and nighttime rates results in an 

overall net increase in electricity demand, by about 3%. Because residential electricity demand is about a quarter 

of  overall electricity usage in Hawaii, we find there is a 1.7 and 2.4% increase in nighttime and daytime demand, 

respectively, and a slightly larger decline of  2.8% in on-peak loads. 

This study has several limitations. First, estimating the probability of  opting in or out of  such a program is 

outside the scope. However, experience with similar voluntary programs on the U.S. mainland suggests that the 

actual response rate is low – with fewer than 4% of  residential customers. The magnitude of  opportunity for 

gain from such a program in Hawaii is larger, however, because electricity rates as well as the proposed difference 

between daytime/nighttime and on-peak rates are higher than in the continental U.S. Second, we are not 

accounting for existing solar photovoltaic (PV) customers who would be highly unlikely to sign up for TOU rates. 

Third, we do not account for the effect of  declining battery system costs on load-shifting potential. 

The learning opportunity from this kind of  TOU program, particularly if  operationalized in an experimental 

fashion with variation in household technology and information, may be important in understanding adoption of  

real-time-pricing (RTP). While TOU pricing may be a first step to matching times with high levels of  renewable 

energy supplies and consumer demand in the aggregate, it is RTP for all customer classes that provides part of  the 

solution to system stability with high penetration of  intermittent renewable energy. This is an area of  future inquiry. 
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I. INTRODUCTION

Most electricity companies offer electricity at a set retail price that attempts to account for the average wholesale 

cost of  electricity production that can fluctuate on an hourly, daily, and seasonal basis (Borenstein, 2005a). Time-

of  use (TOU) pricing, critical peak pricing (CPP), and real time pricing (RTP) are all time varying pricing schemes 

that set prices based on the timing of  electricity usage. Time varying pricing attempts to gain efficiencies by moving 

electricity prices away from average pricing and closer to marginal pricing. Doing so encourages users to shift their 

energy consumption to times when costs to generate are relatively low (Boiteux, 1960; Borenstein, 2005b). The 

difference between average and marginal pricing is increasingly relevant with high levels of  intermittent renewable 

energy adoption. Ideally, these pricing schemes provide incentive for electricity users to shift their load to times of  

day when generation costs are lower, which often coincides with times when more renewable resources are available. 

Depending on the pricing scheme, this can help provide a better match of  demand to available renewable supplies in 

the aggregate or even on a minute-to-minute basis. 

TOU pricing is a general term that establishes different rates for specified blocks of  time during the day. CPP is 

a variant of  TOU pricing, which most commonly refers to programs that focus on bringing down electricity demand 

during peak usage, usually in the evening for residential customers. RTP more closely follows the actual cost of  

electricity generation with prices set on an hourly basis or at greater frequency. This comes closest to a “dynamic” 

pricing scheme. Opponents of  dynamic pricing often argue that electricity customers would be exposed to too much 

volatility (Alexander, 2010). However, “the presumption of  unfairness in dynamic pricing rests on an assumption 

of  fairness in today’s tariffs” (Faruqui, 2010). RTP is the only pricing scheme that aims to address the problem of  

incremental cost volatility as a result of  integrating intermittent resources. The price feedback between the utility 

and the customer provided by RTP helps send signals to the utility to bring additional generation online during 

periods of  rapid rises in consumption or take them offline during periods of  potential curtailment. It helps send 

signals to customers to incent electricity usage when costs to generate are low and dissuade electricity usage when 

costs to generate are high.1

Hawaii’s largest electric utility, Hawaiian Electric Company (HECO) and its subsidiaries recently proposed 

a TOU pricing scheme for residential rates. The TOU rates were submitted in response to a request by Hawaii’s 

Public Utilities Commission (PUC). This scheme has three tiers of  prices: daytime, on-peak, and nighttime. The 

proposed pricing during the on-peak is akin to CPP, coupled with very low pricing during the daytime and nighttime 

periods. This report summarizes literature related to time varying pricing for residential rates with the purpose of  

informing Hawaii’s electricity stakeholders, including ratepayers and policy-makers, of  the potential impacts and 

considerations regarding TOU pricing in Hawaii. Using a simulation model of  consumer behavior coupled with 

historic residential electricity load data, we estimate the magnitude of  load-shifting potential as a result of  these 

proposed residential TOU rates.

We organize this paper as follows. In Section II, we discuss the framework and goals of  Hawaii’s proposed 

1  This is a rather simplified statement of  the interaction of  loads and intermittent energy. Clearly there is a more complicated 
relationship based on issues of  spinning reserves or other storage technologies.
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TOU rates. In Section III, we take a broad view of  other studies that analyze households’ propensity to consume 

electricity when prices change. We further examine residential consumer’s motivation to shift load under a TOU 

pricing scheme. In Section IV, we present a simple consumer model for residential electricity demand and describe 

our three scenarios of  consumer electricity price sensitivity. In Section V, we report key findings from our analysis. 

Lastly, in Sections VI and VII, we provide discussion and concluding remarks, respectively, focusing on additional 

considerations and impacts regarding TOU pricing.

II. HAWAII’S TIME-OF-USE PRICING PROPOSAL

As Hawaii progresses towards its renewable energy goals, electric utilities face the challenge of  integrating large 

amounts of  intermittent renewable energy resources. Hawaii has a tremendous amount of  solar photovoltaic (PV), 

which has served to bring down the mid-day load in terms of  utility service requirements (Figure 1). It has also 

created this so-called “duck shaped” load curve, where the on-peak requires fast ramp up to meet the spiking load 

as generation from solar PV declines. Figure 1 below shows the change in the aggregate average daily load from 

2000 to 2014. While there are many factors affecting overall demand, and potentially load shape, it is clear that the 

mid-day load has dramatically declined over the last decade. As mid-day load decreases with increased solar PV 

penetration, meeting evening load requires greater ramping up of  utility electricity supply, as exemplified in the 2014 

load curve for Oahu. 

 

Figure 1. Oahu Hourly Net Load Data 

 

 
Source:  FERC, 2015.
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To encourage shifting residential demand away from evening hours, HECO and its subsidiaries proposed TOU rates 

in November 2015 for its service area: Oahu, Hawaii Island, and Maui. The rate proposal is currently up for review by 

the PUC. If  approved, the rates would include a rate schedule for residential customers with a three-tiered price scheme. 

It is unclear, however, how TOU rates might be implemented. In theory they can be mandatory or have an opt-in or 

opt-out provision. 

In the most recent proposal submitted to the PUC in April 2016 (Hawaiian Electric Companies, 2016a),2 the 

rates generally adjust from lowest cost for electricity usage during the daytime period from 9am to 5pm, the highest 

cost during the on-peak period from 5pm to 10pm, and a middle cost during the nighttime period from 10pm to 

9am—with the exception of  Oahu (Figure 2).3 The daytime/nighttime rates are set according to the projected 

marginal cost of  generation in 2017. Oahu’s nighttime rate is set two cents lower than its daytime rate, likely due to 

its primary reliance on inexpensive coal-fired generation. On-peak rates are adjusted to compensate for fixed costs.

Hawaii’s TOU proposal aims to move loads away from the on-peak hours. The differences between high and 

low TOU rates are $0.33/kWh on Oahu, $0.35/kWh on Maui, and $0.50/kWh on Hawaii Island. 

Figure 2. Residential TOU Electricity Rates Compared With Flat Rate4

Source: Hawaiian Electric Companies, 2016a

2    This proposal follows an earlier request submitted by Hawaiian Electric Companies in March 2016 (Hawaiian Electric 
Companies, 2016b), both of  which are in response to the PUC’s request to update and provide alternative rates designs. We se-
lect one of  the rate schedules (“PUC-HECO-IR-20-a-i”) that is based on allocating fixed costs in the on-peak period and holds 
the daytime rate constant. 
3     These identified time periods do not necessarily coincide to times of  low and high demand, though this varies with season 
and weather.
4     To eliminate an additional income effect, the flat rate is calculated such that an average household’s electricity bill would be 
the same if  they did not change their usage. While our calculated flat rate for Oahu is nearly identical with that reported under 
Schedule R in “PUC-HECO-IR-20-a-i”, Hawaii’s rate is lower by nearly $0.02, and Maui’s by $0.07. See Section IV (Method-
ology and Scenarios) for further details. Also, the rates for Maui reflect that of  Maui Island; for modeling purposes, the rest of  
Maui County is omitted from the analysis since their electricity demand makes up less than X% of  the statewide total.  
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III. RESIDENTIAL PRICE ELASTICITY RESPONSES: A REVIEW OF EXISTING 
STUDIES

Time varying pricing has been tested and used by select utility companies in the U.S. and abroad for 

decades. The first major effort in the U.S. to study time varying pricing schemes began in 1975 driven by the U.S. 

Department of  Energy (DOE). These early studies brought to light the difficulty in determining a generalizable 

estimate of  how consumers respond to electricity price changes. Within the field of  economics, the parameter that 

is used to measure consumer sensitivity to prices is called price elasticity of  demand. In shorthand, this is often referred 

to as “demand elasticity,” and is calculated as the ratio of  the percentage change in quantity demanded to the 

percentage change in price.

Consumer Price Responsiveness: Short-Run and Long-Run

Estimating demand elasticity is important to understanding expected aggregate consumer response to price 

changes. When electricity prices first shift, consumer response tends to be limited, with only minor changes in 

demand. Over time, however, consumers exhibit greater responsiveness on the whole, and in some cases show 

major changes in electricity consumption. This greater responsiveness over time may be due to opportunities for 

technology adoption, such as investing in more efficient appliances. 

Differences between short- and long-run demand elasticities, as found in twenty-three studies for the U.S. and 

other developed economies, are shown below in Figure 3. Short-run elasticities are reported in blue and long-run 

in red. The markers indicate either the single value reported by the study or the bounds of  the range of  values. 

Figure 3. Short- and long-run price elasticity of demand, as reported in identified studies
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Elasticity estimates less than one (in absolute value) are considered “inelastic,” meaning there is less than a one 

percent change in the quantity of  electricity demanded for every one percent change in the price of  electricity. 

Elasticities greater than one (in absolute value) are considered “elastic,” meaning there is more than a one percent 

change in quantity demanded for every one percent change in price. Within the studies surveyed, all short-run 

demand elasticities for electricity are found to be inelastic. The median value is about -0.3, though there is variation. 

In the long-run, most studies found demand elasticities to remain inelastic, with the median value around -0.5. 

There are a few studies that found quite a large magnitude of  sensitivity to price, ranging up to almost -2. These 

tend to be older studies that do not rely on more contemporary econometric estimation techniques. More recent 

studies suggest demand for electricity is inelastic, even in the long-run. 

The studies represented in Figure 3 are for changes in flat rate electricity pricing schemes. As might be 

expected, similar results were found in a study of  short- and long-run elasticities looking specifically at TOU pricing. 

Depending on geography and demographics, own-price elasticity of  demand for peak electricity usage ranges from 

-0.2 to -0.8 (Aigner, 1985). In other words, a 10% increase in electricity rates during peak times results in a 2% to 

8% decline in usage during the peak. 

Consumer Substitution with Time Varying Rates

There is additional literature focusing on measuring consumers’ ability to adjust their timing of  demand as a 

result of  time varying rates. These studies examine how much consumers respond to prices in one time period by 

shifting their electricity demand to other time periods, often from peak to off-peak times. This effect is crucial to the 

overall efficacy of  time varying rates (Taylor, 2005). 

Consumer response to time varying rates by load shifting is commonly measured through two parameters—

cross-price elasticity of  demand and elasticity of  substitution (also called substitution elasticity). While both 

parameters reflect the ability and preference of  consumers to change their electricity usage across periods of  time, 

they are different calculations for evaluating response to price changes between periods. Cross-price elasticity 

measures the change in demand in one period in response to a change in price in another period.5 Substitution 

elasticity captures price sensitivity through the relative change in usage in time periods as a result of  the relative 

change in prices. For model calibration, we focus on substitution elasticity.6 Substitution elasticities are typically 

positive, meaning that time periods are substitutes for one another, where higher values indicate more substitutability 

between periods. Six studies summarizing substitution elasticities for CPP regimes are shown below in Figure 4. 

5     Where a negative value indicates electricity consumed in the two periods are complements, and substitutes when cross-price 
elasticity takes on a positive value.  
6     This is due to our use of  a nested constant elasticity of  substitution utility function model.
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Figure 4. Values of peak to off-peak substitution elasticity reported in the literature
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Other studies have found no measurable substitution effect in response to implementation of  TOU pricing. 

Namely, consumers show a tendency to conserve energy rather than shift usage to other periods (Alcott, 2011; Jessoe 

and Rapson, 2014). Allcott (2011) despite substantial hourly variation in the wholesale market price. This paper 

evaluates the first program to expose residential consumers to hourly RTP found overall price elasticities of  -0.1 

for voluntary TOU customers in Chicago, but attributed the modest response to energy conservation during peak 

periods rather than a shift to off-peak periods. Jessoe et al. (2014) found that customers who crossed a threshold 

of  power usage, and were consequently switched to a mandatory TOU pricing, responded by reducing electricity 

usage even during times of  lower rates. Energy conservation could be a positive side effect from the point of  view of  

reducing greenhouse gas emissions. However, TOU pricing does not necessarily provide a cost-effective means for 

energy conservation. Inefficiencies that exist with respect to actual cost of  electricity production for flat-rate pricing 

will remain if  TOU pricing only results in energy conservation without any shifting in load (Orans et al., 2010). Load 

shifting, therefore, is a critical objective of  TOU pricing and lack of  evidence of  load shifting may reflect a need for 

enabling technologies such as smart meters or smart appliances. 

IV. CONSUMER ELECTRICITY DEMAND MODEL: METHODOLOGY AND 
SCENARIOS

To estimate the magnitude of  load-shifting opportunities as a result of  HECO’s proposed TOU rates, we use a 

simple model of  consumer demand based on the literature’s estimates of  households’ demand sensitivity to changes 

in electricity prices. Specifically, we construct a multi-level utility function. In the first level, consumer well-being is 

derived from consuming electricity and all other goods subject to a budget constraint. At the second level, consumers 

use electricity during a twenty-four hour period, where the hours are grouped in three tiers as proposed by the TOU 

blocks. We adopt a nested constant elasticity of  substitution (CES) utility function. The combined maximization 

problem is represented in Equation 1.  

  

Equation 1. Utility function and budget constraint.
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α is the value share of  income spent on electricity purchases; β is the value share of  income spent on each tier 

of  electricity; t denotes the three time periods corresponding to the TOU rates; j denotes the three island systems 

controlled by HECO and its subsidiaries;  elas
ele
 represents own-price elasticity; esub

ele
 denotes the elasticity of  

substitution among the three time periods; and l represents the household budget following each county’s average 

household income (DBEDT, 2015). P(AOG), or the price of  all other goods on each of  the islands j, is taken to 

be exogenous. P ( t, j ), or the price of  electricity in the TOU time period t, is also exogenous and is based on the 

proposed TOU rate schedule. The model solves for Q ( t, j ), the quantity of  electricity consumed in each TOU time 

period t, and Q ( AOG, j ), the quantity of  all other goods, given these prices. 

To distribute the total annual electricity consumption in 2015 over time (as given in DBEDT, 2016), we use a 

residential load curve for the non-PV customer as shown in Figure 5.7 The load profile is a daily average from 2,280 

non-PV smart meters installed in the areas represented by the zip codes 96815 and 96816 from June 2014 to May 

2015 on a 15-minute interval basis. By using a non-PV residential customer load curve, due to data limitations, we 

overestimate the impact of  TOU rates. Existing Net Energy Metering (NEM) customers have little to no incentive to 

participate in a TOU program. However, non-PV customers comprise the majority of  residential load.8 

Figure 5. Daily Average Residential Load Curve (non-PV customer) 

Source: Hawaii Energy, 2015.

To isolate the price effect of  changing from flat rates to TOU rates in motivating changes in consumer demand 

for electricity, we assume if  usage remained the same under the TOU rates, then there would be no change in the 

7     The load curve was estimated from a graphic provided by Hawaii Energy. Clearly better data would provide opportunity for more de-

tailed analysis, including exploring issues of  seasonality and heterogeneity between customers.

8      As of May 2016, approximately 15% of Oahu households have solar PV (City and County of Honolulu, 2016; U.S. Census, 2007-2014).

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 

k
W

 

12
a
m

 

1a
m

 

2
a
m

 

3
a
m

 

4
a
m

 

5
a
m

 

6
a
m

 

7
a
m

 

8
a
m

 

9
a
m

 

10
a
m

 

11
a
m

 

12
p

m
 

1p
m

 

2
p

m
 

3
p

m
 

4
p

m
 

5
p

m
 

6
p

m
 

7
p

m
 

8
p

m
 

9
p

m
 

10
p

m
 

11
p

m
 



UHERO ENERGY POLICY & PLANNING GROUP AUGUST 2, 2016 - PAGE 9

© 20162424 MAILE WAY, SAUNDERS HALL 540 • HONOLULU, HAWAII 96822 • (808) 956-2325 UHERO.HAWAII.EDU

total amount paid for electricity as a result of  signing up for the TOU program. Therefore the baseline rates are 

calculated so that the average household’s electricity bill under the flat rate is the same as under the TOU rates 

assuming the same electricity usage pattern. This removes what would otherwise cause an “income effect,” meaning 

that a customer would use more energy if, for example, they happened to save on electricity costs even using the 

same amount of  energy.

Scenarios

To account for the variation in measured demand response across studies, we select three alternative scenarios 

with a focus on varying substitution elasticity parameters. We label these scenarios: Appliance, Literature, and 

Restrictive. All scenarios are modeled with an own-price elasticity of  -0.4, which is the average of  the median of  the 

short- and long-run elasticities as reported in Figure 3, and assume full customer participation in the TOU program.

Appliance Scenario

The Appliance Scenario serves as an upper-bound estimate of  the opportunities for load shifting from peak to 

off-peak hours given current technologies. We account for a typical household’s appliances to estimate the maximum 

amount of  flexible generation. We adopt appliance load shapes from Levy and Kilicotte (2013)9 and Pratt et al. 

(1989),10 which provide average annual hourly consumption by appliance. These individual appliance load shapes 

are then scaled using annual energy use estimates by appliance for a household of  four in Hawaii (HECO, 2013) as 

shown in Figure 6.

9      The demand response roadmap provides the load profile for residential water heating on an October peak day in 2011. 

10     Metered data were collected from 499 residences in the Pacific Northwest over four years as part of  the End-Use Load and Consumer 

Assessment Program. The appliance load shapes from Pratt et al. (1989) are also used in a more recent U.S. Department of  Energy study 

(Sastry et al., 2010). 
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Figure 6. Hawaii Annual Energy Consumption By Appliance (kWh)

Source: Hawaiian Electric Companies, 2013.

We identify air conditioners, electric hot water heaters, second refrigerators, clothes dryers, clothes washers, 

and dishwashers as appliances theoretically capable of  shifting away from on-peak consumption with relative less 

inconvenience to consumers. These loads are illustrated on an hourly basis in Figure 7.11 

11      The load curves were estimated from graphics provided in Sastry et al. (2010) and Pratt et al. (1989).
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Figure 7. Daily Appliance Load Curves

Source: Pratt et al., 1989; Levy and Kiliccote, 2013; Hawaiian Electric Companies, 2013.
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We heroically assume households can shift their entire on-peak electricity usage for the above appliances to 

other hours.12 To determine flexible on-peak electricity consumption by appliance for all households in Hawaii, 

we multiply the annual electricity or energy use13 by the share of  “shiftable” load and the average U.S. household 

penetration rate per appliance14 (EIA, 2013), scaled by the number of  Hawaii households and the average number 

of  persons per household (U.S. Census, 2015). This results in an estimate for on-peak electricity consumption 

for loads identified as “shiftable.” Based on total residential electricity consumption of  roughly 2.5 TWh in 2015 

(DBEDT, 2016), the total share of  flexible generation during the on-peak (5-10pm) in the residential sector is 

estimated to be 18%.15 

With an own-price elasticity of  -0.4, the Appliance Scenario is run with a substitution elasticity among the three 

tiers of  3. This means that electricity consumption among time periods is highly substitutable and non-binding. 

Rather, our estimated maximum share of  flexible load (18%) acts as the primary constraint. This scenario serves as 

an upper-bound for the potential of  residential load shifting given today’s typical appliance usage.

Literature Scenario

For the Literature Scenario, we choose a substitution elasticity parameter of  0.15, as it is within the range 

commonly found in most studies (excluding New Jersey General Public Utility, GPU, which is much higher at 0.3). 

We apply this elasticity parameter to the opportunity for load-switching among all price tiers. This scenario serves as 

our most representative of  experiences in other places.

Restrictive Scenario

Whereas the Appliance Scenario gives an upper bound on load switching opportunities with current 

technologies, the Restrictive Scenario looks at a very low substitution elasticity of  0.05. This value reflects the 

findings of  Alcott (2011) and Jessoe and Rapson (2014), with little to no evidence of  load-shifting. This scenario 

serves to provide insight into the magnitude of  price-induced changes in consumption within each time period, with 

limited load shifting.

12      Except for air conditioners which only shift the first three hours of  their on-peak consumption to the mid-day period to pre-cool homes. 

13      We assume households either have room AC or central air AC, and take the average energy use of  central AC and two room AC to 

derive the flexible generation for AC.

14      87% of  U.S. households have air conditioning equipment; 41% of  households have an electric hot water heater; 23% own a secondary 

refrigerator; 30% have a freezer; 80% have a clothes dryer; 59% have a dishwasher; and 82%, a clothes washer. 

15     This translates to 32% of  daily electricity consumption based on an average of  18.3 kWh consumed by a non-PV household (Hawaii 

Energy, 2015). 
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V. KEY FINDINGS

We find that if  all residential customers adopt TOU rates as proposed, there could be about a 10% reduction 

in on-peak residential electricity demand – both as a result of  price-induced conservation and load shifting. Overall 

we find that there will be incentive to increase total electricity demand. Though there is load-shifting into day and 

nighttime hours for all three islands, there is more load-shifting to the night on Oahu because of  relative rates. And 

the dramatic difference in rates on Hawaii Island leads to the largest relative shift in loads. Figure 8 below plots our 

estimated change in the annual hourly load profile for the sum of  Oahu, Hawaii Island, and Maui County demand, 

under the baseline (no TOU pricing) and three alternative scenarios. Note that the uniform “shift” up or down 

during the three tiers is purely illustrative. The bordering hours of  the on-peak period may be more substitutable, 

though this is not accounted for within our consumer model. Customers who are able to change their consumption 

behavior may be shifting their load near the bounds of  the period rather than throughout.  

Figure 8. Estimated Hourly Residential Load Profile 
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 The Appliance Scenario, which assumes that up to 18% of  on-peak consumption can be moved easily (i.e., 

high elasticity of  substitution among tiers) to off-peak periods, unsurprisingly exhibits the greatest decline in usage 

during the on-peak period. The daytime period (9am – 5pm) reaches the highest level of  usage throughout, when 

rates are typically lowest. We find that daytime period demand could increase by up to 16%, nighttime demand 

could increase by about 10%, and on-peak period demand could decline by as much as 15%. During the on-peak, 
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this amounts to a decline by 54 MWh compared to the baseline.16 

The Literature Scenario traces the load profile of  the Appliance Scenario on a smaller scale. Electricity 

consumption in the daytime increases by 9%, in the nighttime by 8%, while demand in the on-peak period is 

lower by 10% (amounting to 36 MWh compared to the baseline). Given this scenario most closely follows the 

examples reported in the literature (though studies are limited and varied), it gives our best estimate for load-shifting 

possibilities as a result of  the proposed TOU rates. 

The Restrictive Scenario, which assumes a substitution elasticity close to zero, shows only a slight deviation 

upwards during the daytime and nighttime periods and downwards during the on-peak period. Consumption 

increases by 3% during the daytime period, 2% during the nighttime period, and a 3% decline during the on-peak 

period (amounting to 12 MWh compared to the baseline). Most of  this response is due to adopting dramatically 

different prices within those time periods. This scenario serves to showcase the magnitude of  change in consumption 

that may be coming simply from changing prices rather than load shifting. 

The impact of  TOU rates on electricity demand in each period as well as overall is summarized in Figure 9. 

Figure 9. Change in Electricity Demand from the Baseline (%)

 

16     This result is largely driven by the Oahu’s lowest rate occurring in the nighttime and Oahu’s load comprising 68% of  residential load 

among the three islands. The impacts of  load-shifting from TOU rates were also modeled using a candidate schedule (“PUC-HECO-IR-17”) 

from the March 2016 filing. This candidate schedule’s rates were also calculated by allocating the fixed costs to the on-peak period. However, 

Oahu’s daytime rate was the lowest of  all three periods, following that of  Maui Island and Hawaii Island. Therefore, the increase in consump-

tion during the daytime period exceeded that of  the decline during the on-peak period by roughly 3,700 MWh.
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Overall, we find that adoption of  the rates proposed under the TOU program leads to an increase in residential 

electricity demand of  1% to 6%. Low pricing during daytime and nighttime hours cause this result. Figure 10 below 

focuses on the Literature Scenario and shows results for Oahu, Maui and Hawaii Island. 

Figure 10. Literature Scenario, Change in Electricity Demand from Baseline (%) 

For Oahu, Hawaii Island, and Maui

Because Oahu’s proposed TOU rates have the lowest rates during the nighttime period there is relatively more 

load shifting toward nighttime hours than daytime. For Hawaii Island, the dramatic $0.50/kWh difference in 

rates between on-peak and daytime hours causes the most relative shifting. There is an 11% reduction in on-peak 

electricity demand, a nearly 17% increase in daytime demand, and a 4% increase in nighttime demand. Maui 

experiences a nearly 10% reduction in on-peak demand, an 11% increase in daytime demand, and a 3% increase in 

nighttime demand.

Although TOU rates can have considerable impact on the residential load and residential customers account for 

86% of  total customers, the residential sector makes up less than 26% of  total demand (DBEDT, 2016). Figure 11 

illustrates our estimates for the change in total electricity demand from the baseline.17

17     The change in total electricity demand is calculated based on the 2014 net load curve (FERC, 2015) as shown in Figure 11 for Oahu 

(and scaled according to total demand for the other two islands). To obtain the non-residential load, the residential load in the baseline sce-

nario is subtracted from the total net load. The residential load in each of  the three scenarios is then added to the non-residential load.
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Figure 11. Change in Total Electricity Demand from the Baseline 

 

By re-scaling our results to the overall electricity load, we can see that the magnitude of  load shifting as a result 

of  residential adoption of  TOU rates (meaning all residential customers) is limited. Even in the scenario with the 

greatest switching, the Appliance Scenario, adopting TOU rates results in a 4.3% increase in daytime loads, a 2.3% 

increase in nighttime loads, and a 4.1% reduction from the on-peak. The more likely Literature Scenario leads to 

a 2.4% increase in daytime loads, a 1.7% increase in nighttime loads, and a 2.8% reduction in the on-peak. Once 

accounting for voluntary participation, system impacts would be likely nearly imperceptible.  

VI. DISCUSSION 

While these results might capture the range of  behavioral response of  the average consumer who adopts TOU 

pricing, the overall effectiveness of  the program is contingent on actual customer participation. For opt-in programs, 

participants can often be a small subset of  the total electricity customers. As of  2014 at least one utility in each state 

(with the exception of  Rhode Island) offers TOU pricing, yet only 4% of  residential customers are enrolled in TOU 

programs (Sherwood et al., 2016). In a test of  TOU rates in the Midwest, a total of  2,400 out of  60,000 random 

households contacted chose to participate in TOU pricing (Baladi et al., 1998). A statewide California study found 

that of  8,679 enrollment packages sent out, 1,759 customers elected to participate in the CPP program, with an 

appreciation payment of  $175 offered, and 4% opted out after a few months (Charles River Associates, 2005). A 
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are set such that they benefit the individual customer. Given the large proposed spread in rates, the opportunity for 

gain in Hawaii may be larger than in other U.S. locations. On the other hand, Hawaii has a high penetration of  

solar PV customers. Customers who are in the NEM program would have little to no incentive to enroll in TOU 

rates because they likely net generate during the daytime hours so adopting the TOU rates would lead to these PV 

customers receiving far less money for the electricity that they generate. PV customers on the more recent grid-

supply option already experience a block-pricing schedule akin to TOU rates. 

For many customers, the key to increasing household participation and response to voluntary time-variable 

pricing programs may lie in information access and appliance technology. To make the decision to participate in a 

TOU program, information from the utility company should be accessible and provide sufficient information for 

users. A review of  literature shows the possibility that quick, clear, and meaningful feedback about energy usage 

has the potential to reduce electricity consumption by 5-20% (Vine et al., 2013). A study of  Southern California 

households found that consumers exhibit greater response to average price rather than to pricing schemes such as 

TOU (Ito, 2014). The author offers reasons that monthly bills are often complex and hard to understand and it is 

difficult for electricity customers to monitor their consumption without an in-home display (IHD). Additional studies 

found that customers with more knowledge and information about electricity rates and usage find more ways to 

respond to pricing (Jessoe and Rapson, 2014). 

Potential for cost-savings extends into the utility side with peak demand reduction from full customer 

participation. In the European Union, for example, several countries have extensive smart meter installation in 

households. It is estimated that smart meters coupled with time-variant pricing in Europe could result in significant 

cost savings for utility companies given a reduction in the need for peaking infrastructure, with savings tied directly 

to the amount of  customers shifting load (Faruqui et al., 2010a). With TOU pricing, it is therefore beneficial to the 

utility company to promote technology, such as IHDs, which enables customers to shift their energy load.

Consideration of  lifestyle and demographics is also an important component in establishing TOU programs. 

Lifestyle of  households may explain some variation between consumers’ load-shifting abilities. Sanquist et al. (2012) 

found that household lifestyle patterns accounted for 42% of  the variance in electricity consumption from major 

appliances. Often, concern is cast on people who might be most vulnerable to rate changes, especially low-income 

households that might be least likely to participate in a voluntary program. On the other hand, studies have shown 

that TOU pricing can have benefit to low-income households. In a study conducted in Australia, Simshauser et 

al. (2014) found that 64% of  households are better off with TOU pricing compared with flat-rate pricing, with the 

greatest improvement amongst low-income groups. Wood and Faruqui (2010) found similar benefits to low-income 

households under a TOU program and attributed the gains to the tendency for such households to have flatter 

load curves than average, and therefore would relatively benefit even without peak reduction. All things considered, 

Martiskainen and Ellis (2011) argue that energy policy should take an interdisciplinary approach between 

economics, socio-psychology, and technology.
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VII. CONCLUSION 

In this study, we develop three scenarios to characterize consumer responsiveness to varying electricity rates 

during the daytime, on-peak, and nighttime periods assuming full customer participation: an Appliance Scenario 

that assumes the highest degree of  substitutability between periods, a Literature Scenario that assumes a shiftable 

load within the median range found empirically in many studies of  TOU pricing, and a Restrictive Scenario that 

assumes very little electricity substitution between periods. To maximize the success and benefits of  implementing 

a TOU program, our study underscores two critical considerations. The first is the importance of  enabling 

technologies providing for greater potential load shifting, both in regards to information and automation, and the 

second is the importance of  customer participation in achieving efficiency goals in electricity generation. 

From our modeling, we find that HECO’s proposed TOU rates could lead to a 10% reduction in on-peak 

electricity usage by participating residential consumers, and increase daytime consumption by 9% and nighttime 

consumption by 8% (Literature Scenario). We find there is a resulting positive increase in overall electricity 

consumption, largely as a result of  consumer price responsiveness to off-peak prices being about half  of  today’s 

current electricity rates hours. This effect would be even greater accounting for an income effect18 as a result of  

overall lower electricity costs. Furthermore, the model results point to the importance of  appliances in a residential 

household’s decision to shift load. The difference in percentage change during TOU periods between the Appliance 

and Literature Scenarios suggest that although a certain amount of  appliance load is potentially switchable, residents 

are unlikely to switch that amount of  their appliance load, especially without enabling technologies. Moreover, 

expectations for overall load-shifting should be quite modest. This is due to both residential electricity demand being 

about a quarter of  total load and, if  the program is voluntary, uptake is likely to be low based on experience with 

other programs in the U.S. and the high penetration of  PV. That said, the learning opportunity from this kind of  

TOU program, particularly if  operationalized in an experimental fashion with variation in household technology 

and information, may be important in understanding adoption of  other variable pricing mechanisms, like RTP. 

While TOU pricing certainly helps to better match available renewable energy supplies with consumer demand, 

fixed block rates only capture a fraction of  the efficiency gains in comparison to RTP (Borenstein, 2005b). 

Future work will look at the possibilities for RTP in Hawaii. This work will include analysis of  non-residential 

rates, as commercial and industrial customers account for about two-thirds of  electricity loads (Hawaiian Electric 

Companies, 2015). The magnitude of  commercial and industry electricity suggests that there is greater possibility for 

load shifting within these sectors, however, empirical evidence shows a dramatic range of  outcomes19. 

18     Due to increased disposable income brought about by lower priced goods and services because of  lower production costs as a result of  

lower electricity prices.

19     Among 43 surveyed utilities in the U.S., Wang and Li (2015) found switching from a flat to a TOU rate resulted in a large range of  

change in the electricity costs of  -72% to +83%, where businesses with shorter workdays would save the most from switching. 
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Study Limitations 

Our estimates for the potential for load-shifting away from on-peak hours are biased upward not only by our 

assumption that all residents participate in the program but also because, due to data limitations, we use a non-PV 

customer load curve that is scaled to all resident demand. In reality, existing PV NEM customers would have little 

to no incentive to participate in a TOU program. It is outside of  our study scope to estimate the probability of  

customers opting into a TOU program as proposed. It should be noted, however, that declining battery technology 

costs could also be a tremendous mechanism for storage and load shifting. Incorporating battery technology is an 

additional area for future research.
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