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Uncertain Populations and the Value of Information 

 

 

1. Introduction 

An emerging problem in natural resource policy is how to design efficient strategies for 

managing invasive species.  Invasive species, those plants, animals, and microbes that are 

nonnative to an area and have caused or have the potential to cause economic and or 

ecological damage threaten natural resources, biodiversity, and human health worldwide.1  

 

Damages from invasive species are ecological as well as economic. These include lost 

biodiversity and reduced ecosystem services, as well as direct and indirect economic 

damages such as health damages or lost productivity. Caterpillars from the Asian gypsy 

moth (Lymantria dispar) cause extensive defoliation, reduced growth and mortality of 

host trees throughout the northern hemisphere, while hairs on larvae and egg masses lead 

to allergies in some people. The Nile perch (Lates niloticus) was introduced to Africa’s 

Lake Victoria in 1954 and has since contributed to the extinction of more than 200 

endemic fish species through predation and competition for food. Caulerpa taxifolia is a 

marine alga widely used as a decorative aquarium plant. The alga was accidentally 

introduced into the Mediterranean Sea in wastewater, where it has now spread over more 

than 13,000 hectares of seabed. This invader forms dense monocultures that prevent the 

establishment of native seaweeds and exclude almost all marine life. Tamarisk (Tamarix 

ramosissima) is a shrubby tree that can be found where its roots reach the water table, 

                                                 
1 This definition of invasive species is from President Clinton’s Executive Order 13112, signed on February 
3, 1999. 
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such as floodplains, along irrigation ditches and on lake shores. Tamarisk can tolerate a 

wide range of saline or alkaline soils and is able to dominate floodplain communities in 

the deserts of the Southwest United States due to its ability to tolerate water stress for 

extended periods of time. Tamarisk supports few native insects and thus is poor habitat 

for birds. The well-known invasion of the Brown treesnake (Boiga irregularis) on the 

island of Guam poses a real and immediate threat to the state of Hawaii, due to the large 

and increasing volume of military transport between to the locales, as well as commercial 

air and sea traffic. The snake has extirpated 11 native bird species on Guam, causes 

hundreds of hours of power outages a year, and sends a stream of citizens to the hospitals 

each year to treat venomous snakebites. Eight individual Brown treesnakes (hereafter, 

BTS) have been intercepted at the ports in Hawaii, accompanied by hundreds of credible 

snake sightings resulting in zero captures. 

 

While the economic literature on invasive species has been growing rapidly, most 

analyses have made simplifying assumptions that may detract from the usefulness of their 

implications. One aspect of invasive species control that makes practical implementation 

particularly difficult is that the actual population of the species is almost never known. 

The only variables that a typical resource manager observes with certainty are the number 

of the invasive successfully harvested and the effort required to achieve that harvest. Like 

most renewable resource problems, the literature to date typically assumes a given initial 

population of the stock of interest. In our paper we develop a model in which the invasive 

species population is known neither in the initial period nor in any subsequent 
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management periods. Instead of setting harvest directly, managers set effort decisions for 

each period and then observe the harvest said effort yields.   

 

In the context of renewable resource use including fisheries, several studies have 

analyzed the case where the resource stock is uncertain due to lack of information or 

measurement error (Clark and Kirkwood 1986, Roughgarden and Smith 1996, Sethi et al. 

2005).  Economic studies on biological invasion have focused on the case of 

deterministic species population. Knowler (2005) briefly mentions the possibility of 

uncertainty in resource management, but shows how it can be ignored when after-harvest 

populations can be set precisely as in Reed (1979). The only notable exceptions that we 

are aware of in the invasive species literature are Olson and Roy (2005) and Saphores and 

Shogren (2005). Invasion size is random in Olson and Roy, although after invasion the 

stock is perfectly observable. Furthermore, some of the simplifying assumptions required 

by their framework may misrepresent the challenges faced by real world planners in 

invasive species management, such as the linear growth function and the possibility of 

perfectly effective prevention. Saphores and Shogren allow growth to be uncertain, 

although stock is always accurately observed. Interestingly, they also allow for 

uncertainty regarding policy, where the optimal policy is not able to be computed until 

uncertain time T. While managers are (potentially inefficiently) investing funds to 

determine what the optimum policy is, the invasive population itself is left completely 

unmanaged. We depart from these existing models on invasive species management by 

assuming uncertain species population size. 
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Our model addresses two issues left unresolved in the literature to date. First, what is the 

best a manager can do when true optimum policy is unknown, and second, how can 

actual control efforts be used in place of costly research to inform policy making 

decisions. 

 
 Through species management, the managers obtain new information each period about 

the probability distribution of the species population size.  Borrowing from the vast 

literature on renewable resources and learning, we model the connections between 

observable data (effort and harvest) and the unobservable invasive stock using the 

Bayesian methods.  If the effort-harvest function is stochastic but known, the model 

allows for beliefs about the invasive population to be updated each period and the 

manager is therefore able to tailor the control strategy appropriately.  

 

Section 2 sets up the baseline case where the population is known with certainty. Section 

3 outlines the optimal strategy when the population is uncertain and considers a 

simplified functional form. Section 4 uses a case study, control of the Brown treesnake 

(Boiga irregularis) on the island of Saipan to illustrate the solution techniques. Section 5 

concludes. 

 

 

2. Harvest under Certainty  

 

The usual renewable resource problem begins with a resource manager who maximizes 

the present value of a resource. Optimal management of an invasive species can be 
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approached in a similar fashion. Maximizing the value of invasive species management is 

the same as minimizing the total present value of the expected costs of removing the 

species as well as the expected damages caused by the species. 

 

In our model, the invasive species reproduces, causes damages, and is harvested in 

discrete time periods. We assume that population growth and ecological damages are 

deterministic, while the manager’s harvest of the species is stochastic. The assumption of 

deterministic growth will help us isolate the information effects we are looking for later 

in the paper. 

 

Let tX  denote the population of the invasive at time t. Each period this population causes 

( )td X dollars worth of damage to the local ecosystem. Managers are able to reduce the 

population through stochastic harvesting. We denote te  as the effort exerted to reduce the 

population, and ( )tc e  the cost the manager bears given te .  

 

In the case where population is observable each period, the manager is able to set effort 

decisions based upon the observed harvest. The total present value (or cost, denoted PV) 

of the stock of the invasive, X, can be thought of as the optimal control costs today, the 

damages today, and then a discounted sum of the stream of control costs and damages 

into the future. We denote the discount factor as δ. The harvest in period t, ht, is a 

function of the stock of the invasive Xt,, the effort level et, and a random variable, εt. 

( , , )t t t th h X e ε= .         (1) 
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The variable ε represents the stochastic relationship between harvests, efforts, and 

population size.  Future populations of the invasive will depend on the post harvest 

population and the species specific growth function, g. 

1 ( )t t tX g X h+ = − .         (2) 

The resource manager’s objective is to maximize the discounted total expected present 

value of species management: 

( ){ }.)()(
0 ttt

t XdecE −−∑∞

=
δ ,        (3) 

subject to the harvest and species growth constraints (1) and (2) for all t given an initial 

population size X0>0. Given this setup, the following functional equation characterizes 

the optimal solution: 

1( ) max ( ) ( ) [ ( )]
t

t t t te
PV X c e d X E PV Xδ += − − + ,     (4) 

subject to (1) and (2) given an initial population size X0.  Efficiency requires that effort 

should be chosen so that the marginal cost of the effort is equal to the marginal benefit 

from reducing the population:  

( , , )
1'( ) [ '( | ) '( ) ]t t

t

h X e
t t t t ec e E PV X g X h εε ∂

+ ∂= − − .     (5) 

The left-hand side represents the marginal cost of efforts in period t.  The right-hand side 

represents the expected marginal benefits of efforts in period t.  Given ε, an increase in 

efforts changes harvests, which in turn influences the species growth and the species 

population next period.  The right-hand side captures the resulting change in the expected 

present value of species control starting next period, where the expectation is taken over 

ε.    
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3. Uncertainty 

 

The above problem becomes more interesting and perhaps more realistic when the 

population of the invasive is not known with certainty. Managers in an uncertain world 

are no longer able to make policy decisions based on the true population of the invasive, 

but rather on estimates of those populations. Understandably, as the manager’s estimate 

becomes more accurate, the closer the optimal policy resembles the solution when the 

population is known.  

In the presence of uncertainty, a manager no longer has a simple population of the 

invasive that they must deal with, but instead is forced to optimize over the belief on 

uncertain population, i.e., a probability distribution of the possible population size. Every 

potential population size should be considered when determining the appropriate effort 

level.  

 

Let F be the cumulative distribution function that the manager has over the population of 

the invasive. That is, F(x)=P(X≤x). Let f be the associated probability density function. 

The following functional equation characterizes the manager’s maximization problem: 

10
( ) max ( ) ( ) ( ) [ ( )]

t
t t t te

PV f c e f x d x dx E PV fδ
∞

+= − − +∫ .    (6) 

Instead of the actual population, X, present values are based on the distribution of 

possible populations and expected damages are taken instead of actual damages. The 

largest change, and the largest difficulty, lies in determining what ft+1 is.  
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3.1 Bayesian Updating 

 

Bayesian Updating is a method of determining the distribution derived from previous 

beliefs and observable data. In this case, the harvest that the managers observe can be 

used directly in our Bayesian updating framework. First, let us define: 

1( )tx h g x−≡ + ,         (7) 

or in other words, x  is the population last period that would yield a population of x this 

period. Were there additional uncertainty in the growth function, x could not be defined 

as a single variable, and updating would become even more difficult. Now we can write 

1
1

10

( | , ) ( )( | , , ( ))
( | ', ) ( ') '

t t t t
t t t t

t t t t

h X x e f xf x h e f x
h X x e f x dx

π

π
−

+ ∞

−

=
=

=∫
,     (8) 

where π is the probability of observing a harvest of exactly ht given population size x  

and an effort level et.  

 

Equations (6) and (8), above, together yield the necessary equations for maximizing the 

present value of the invasive under uncertainty. What may or may not be clear from the 

above equations is that now, since effort appears in the right hand side of equation (8), 

effort will not only affect the expected mean of the population estimate next period, but 

may also affect the spread. In any context where higher harvests for a particular 

population level would yield second order stochastically dominating distributions, effort 

becomes even more valuable than in the perfect certainty case. This extra value comes 

from the value of information. 
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3.2 A Specific Functional Form 

The equations presented in the last section describe how a resource manager would 

optimally determine the level of effort to set in each period.  In order to provide a more 

precise understanding of how harvest and information updating work in this framework, 

we will add three simplifying assumptions to our model. Throughout the rest of the paper 

we make three assumptions. First, we assume damages are linear in invasive population. 

With this assumption we can set ( )t td X dX=  for all Xt. Secondly, we assume an 

exponential growth rate of the invasive, allowing us to write ( )t tg X h− as t tkX kh− . 

Finally, and perhaps most significantly, we assume that control efforts are a binomial 

process, where each member of the population has an equal likelihood of being caught on 

a given round of treatment.  

 

While these assumptions are not equally applicable to all invasive species, they can prove 

useful in a variety of settings. For example, while most managers agree that invasive 

species can cause massive economic damages, determining how much damage each 

individual member of the species causes can be a great challenge. For this reason, 

approximating damages as a linear function of the invasive population may be a 

reasonable estimate.  

 

Also, not all species reproduce at an exponential rate. Resource economics typically 

assumes a logistic growth function, where the rate of growth slows as the population 

increases, to the point where annual growth rate declines past the point of maximum 
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sustainable yield. However, invasive species introduced to a new ecosystem usually have 

ample supply of prey-base and room to expand. The ability to rapidly multiply in number 

is one factor that makes invasive species such a problem in many cases, and makes an 

exponential growth function more reasonable.  

 

Our most restrictive assumption is the availability of a binomial control strategy. In order 

for a control process to qualify it must have a repeatable methodology, with a likelihood 

of successful harvest of a given member in any iteration that is independent both of the 

harvest of other members of the population as well as independent of past control 

activities. This would exclude species where a large percentage of the population could 

be captured all at once (such as pack animals) or any control strategy that systematically 

cleared an area of the pest.  

 

This approach is defendable for a surprisingly wide variety of species, even ones that 

may not seem applicable. One example is that of sessile species, such as any of the 

numerous noxious weeds that threaten agriculture. If each sweep of an area is considered 

one round of the binomial event, so long as there is an imperfect chance of finding a 

given weed on a particular round, then frequency of the sweeps may depend on expected 

size of the population. For example, suppose a manager attempts to rid the managed area 

of spotted knapweed. The manager knows that it will be difficult to get 100% of the 

knapweed on the first sweep of the area. The assumption is that managers can capture a 

higher percentage of the knapweed with either repeated sweeps or more intense sweeps at 

the same effectiveness per man-hour. 
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As for animals that could potentially be caught at one time, thus violating the 

independence assumption, the problem can be alleviated by changing the unit of analysis. 

For example, red imported fire ants are likely to live together in anthills, and thus if one 

fire ant is discovered, it will be likely that a whole colony will be controlled. However, if 

the unit of analysis is moved to controlling anthills (or queen ants) then the harvest of 

each of those units are more likely to be independent of each other.  

 

Effort in this context is a function of control techniques such as the number of snake traps 

set, concentration of toxicants, or simply person-hours spent hunting. These techniques 

are able to capture, trap, or otherwise kill a percentage of the invasive population in one 

period. Furthermore, varying either the frequency or the intensity of these techniques 

allows the manager to set different percent capture rates. It is these expected percent 

capture rates that we will call e in this context.2  For example, an e = .95 would mean that 

the manager expected to capture 95% of the invasives whatever the optimal combination 

of control techniques necessary. The actual percent of the population captured varies 

around te , but harvesting can never add to the population nor can it remove more of a 

species than are actually present. 

 
                                                 
2 We use expected capture rate as our measure of effort rather than the control technique itself, as is 
commonly done in resource economics (e.g., measuring effort as number of boats or person-hours). This 
allows the transition of population from one period to the next to simply be the previous population minus 
the proportion of snakes removed. Otherwise, the previous population would have to be reduced by a more 
complicated function of the control technique. For example, we would need to specify the precise 
relationship between the control technique and the number of individuals removed. In the case of snakes, 
for example, this would require specification of how many snakes would be removed through traps or 
search hours. This relationship is still necessary to specify in our case, although converting to capture rate 
simplifies the equation of motion. This substitution greatly facilitates computation in the case of harvest 
under uncertainty. 
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In addition to the plausibility and the analytical convenience explained above, this 

framework might be consistent with the decision making by the real world managers, 

who generally set effort levels for a given period and then simply harvest whatever that 

effort level yields. This setting is in contrast to many previous resource models where, 

even in the face of uncertainty, managers set a planned harvest level (or sometimes 

escapement level) and then merely observe whether or not that harvest depletes the 

population.  

 

Given effort level e and population X, the probability that exactly h individuals are 

caught is given by: 

! (1 )
!( )!

h X hX e e
h X h

−−
−

.        (9) 

However, this equation only works for discrete values of h and X. Where convenient we 

will use the continuous approximation of the binomial distribution. As X increases in 

size, and therefore as it approaches a continuous variable, the distribution of h becomes: 

~ ( , (1 ))t t t t th N e X X e e− .        (10) 

Separating harvest into its deterministic and stochastic components, we have: 

t t th e X ε= + , where ~ (0, (1 ))t t t tN X e eε − .      (11) 

Let the expected proportion of the population controlled by a single unit of control effort 

be denoted alpha. If the effectiveness of each unit is independent, the expected proportion 

captured after n units are used is denoted: 

(1 (1 ) )ne α= − − .         (12) 
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When characterizing the cost function, we assume that costs are linear in the control 

activities that determine e. If the cost per unit of the removal technique is c, then the cost 

of effort is: 

( ) log(1 ) log(1 )
log(1 )t t t

cc e e eθ
α

= − ≡ −
−

.      (13) 

 

Our problem can then be characterized as: 

1( ) max log(1 ) [ ( )]
t

t t t te
PV X e dX E PV Xθ δ += − − − + ,     (14) 

ˆ ( )t t t t th X e X ε= + ,         (15) 

ˆ= max (0, min ( , ))t t th h X ,        (16) 

1t t tX kX kh+ = − ,         (17) 

~ (0, (1 ))t t tN X e eε − ,         (18) 

where t̂h is potential harvest. Noting that this value cannot exceed current population nor 

can it be negative), th  is thus realized harvest.  

 

A first order necessary condition for efficient management in this problem is that: 

 1[ ( )] 0
1

t

t t

dE PV X
e de

θ δ ++ =
−

        (19) 

or 
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1[ '( )]
1 t t

t

kX dE PV X
e
θ δ +
−

≈ −
−

        (20)3 

where the marginal cost of removal today must be equal to the present value of the 

change in damages and effort in later periods. This condition describes optimal effort, 

and thus control of an invasive species when harvesting under perfect certainty. 

 

3.3 Harvest under Uncertainty 

 

If the harvest technique is a binomial process and the expected percent capture rates that 

efforts engenders are known, then the population can be estimated through the observed 

harvest and effort rates. We use the normal approximation for the binomial as given 

above wherever convenient. 

 

If the manager has no prior knowledge about the stock of the invasive population at time 

t=0, after observing effort they can calculate: 

0 0 0 0 0 0[ ] [ ] [ ]E h E e X e E Xε= + = .       (21) 

Thus, after observing h and e, an unbiased estimate of tX  is given by: 

0
0

0

[ ] hE X
e

= .          (22) 

Note that equation (22) makes intuitive sense. If the manager expected to capture 50% of 

the population and then 100 species are successfully caught, a reasonable estimate for the 
                                                 
3 If we use the normal approximation for the binomial distribution, the right hand side becomes 

2
1

1 12

1 2 [ ][ '( )] [ [ ]]
2 (1 ) [ ]

t t t
t t t

t

e PV XkX dE PV X E PV X
e e E

εδ
ε
+

+ +

−
+ −

−
, where the term inside the 

expectation is not identically equal to zero because epsilon will be correlated with PV[X_t+1], but will be 
very close to zero.  
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total population would be 200. This estimate is approximately normally distributed with 

variance V: 

0 0 0
0 02

0 0 0

(1 )1[ [ ]] [ ] [ ]h X eV E X V V h
e e e

−
= = = .      (23) 

This information is only somewhat useful in its current state, as population estimates at 

time t can only be obtained after the harvest for that time period takes place. However, 

since our growth function is known, we can use data gathered in the previous period to 

estimate the next period’s population before any harvest decision is made. We define tM  

as the pre-harvest estimate of tX  such that: 

0 0
1 1 0 0 0 0

0 0

1[ ] [ ] h eM E X E kX kh k kh kh
e e

−
= = − = − = .     (24) 

The variance of this estimate is: 

2
2 0 0

1 0 0 0
0

(1 )[ ] [ [ ]] [ [ ] k X eV M V E kX kh k V E X
e
−

= − = = .    (25) 

With this framework, we now have a means of deriving current population estimates 

from easily observable data. Unfortunately, the variance of these estimates does depend 

on the true stock size, an unknown parameter for the managers. In order to maintain 

normality and simplify our results, in our analysis we make the assumption that the 

managers know the variances of their estimates with certainty. Realistically, these 

variances would have to be estimated imprecisely, but would likely yield similar results.  

 

Continuing with our example, we now have a pre-harvest expected population for period 

one. With this information, the manager is able to make a more informed decision for 

second period effort levels. However, after harvesting a second time, the manager could 
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now form a second estimate for the population at time 1 from this new information. This 

new estimate can be written as: 

1
1 1

1

[ ] hx E X
e

= = ,         (26) 

with variance 1 1
1 1

1

(1 )[ ] [ ] X eV x E X
e
−

= = .      (27) 

Except in very rare cases, this new estimate, x, will not equal the previous estimate of 

1X . Because both of these estimates are normally distributed, obtaining the distribution 

for the most likely estimate for 1X  is straightforward. We first define tρ  to be the 

precision of the estimate M, equal to1/V[ tM ] and p to be the precision of our single 

period estimate x, equal to 1/V[x]. Using these parameters, we can create a new estimate 

for 1X  that uses the available information to its fullest. As can be found in any 

elementary statistics book, the new estimate using both sets of information becomes: 

1 1 1 1

1 1

M x p
p

ρ
ρ

+
+

,          (28) 

where the variance is: 

1 1

1
pρ +

.          (29) 

Generalizing this, and applying it to the problem of interest, the manager’s problem 

becomes: 

1 1( , ) max log(1 ) [ ( , )]
t

t t t t t te
PV M e dM E PV Mρ θ δ ρ+ += − − − + ,   (30) 

ˆ ( , )t t t t th X e M ρ ε= + ,         (31) 

ˆ= max (0, min ( , ))t t th h X ,        (32) 
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1t t tX kX kh+ = − ,         (33) 

~ (0, (1 ))t t tN X e eε − ,         (34) 

1
( ) ( )t t t t t t

t
t t

M h x h pM k
p

ρ
ρ+

− + −
=

+
,       (35) 

1 2
t t

t
p

k
ρρ +

+
= ,          (36) 

t
t

t

hx
e

= ,          (37) 

(1 )
t

t
t t

ep
X e

=
−

.         (38) 

where t̂h and th  are again potential and realized harvest as described in the previous 

section, 1tX +  is the new (uncertain) population, 1tM +  is the pre-harvest estimate of 1tX + , 

1tρ +  is the precision of the new pre-harvest estimate, tx  is the estimate of the population 

using only harvest and effort in time t, and tp  describes the precision of this estimate. 

 

In this uncertain framework, effort decisions can only be made based on the expected 

population M and the precision with which we can make that estimate, ρ. The present 

value is thus not only a function of the stock of the invasive, but also of the information 

held at time t. Our first order equation now becomes: 

1 1[ ( , )] 0
1

t t

t t

dE PV M
e de

ρθ δ + ++ =
−

       (39) 

or 

2 1 1
1 1 1 2 2

( , )[ ( , )] [ ]
1 (1 )

t t
t t t

t t t

PV MkE X PV M E
e k e X

ρθ δδ ρ + +
+ +

−
≈ − +

− −
.   (40) 
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The term 1 1 1( , )t tPV M ρ+ +  refers to the derivative of the present value with respect to the 

first argument, Mt+1, and 2 1 1( , )t tPV M ρ+ +  is the derivative with respect to the second term, 

1tρ + . Expected values are taken both over all possible stocks of the invasive, X, and over 

all possible harvest levels, h, given X. The first term on the right hand side of the 

equation is equivalent to the right hand side of equation (20) and represents the marginal 

benefit from reducing the population in the next period. 

 

Effort in the context of uncertainty now gains a secondary benefit. Not only does it 

reduce the expected population next period, but it also increases the precision with which 

the manager knows the population. The second term on the right hand side of equation 

(40) represents the additional value gained from increasing the precision of the 

population estimate in the next period. The value of this term is the additional value 

above and beyond the damages avoided from removing the invasive species from the 

existing population, one almost always ignored in the literature to date. 

 

 

4. Case Study: Brown Treesnake on the Island of Saipan 

 

In order to illustrate the applicability and the desirability of a population updating 

approach, we now turn to the case of the BTS on Saipan, located north of Guam in the 

Commonwealth of the Northern Mariana Islands. BTS has already been noted to cause 

extensive economic damage on Guam in the form of biodiversity losses, massive power 

outages, and health costs (Savidge 1987, Fritts et al. 1987, 1990, 1994). Because of the 
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heavy military presence on Guam and its accompanying movement of people and cargo 

off island, BTS threatens surrounding islands in the Pacific. A recent estimate of an 

optimally managed BTS population in Hawaii, for example, approaches $18 million 

dollars (Burnett et al. 2006). Although Guam authorities have tried vigilantly to minimize 

the chance of BTS escaping to other islands, Saipan has had several sightings of BTS, 

and program scientists and managers believe there is an incipient population (Nathanial 

Hawley, personal communication).  

 

Based on data gathered on Guam, the cost to sweep the island looking for snakes enough 

times to obtain an expected percent capture rate of e is: -$2,023,000*log(1-e). For a more 

detailed look at the derivation of this formula, see the appendix. Assuming that BTS will 

cause similar damages to Saipan as it might in Hawaii, we estimate d to be 121.79 per 

year or approximately $10.15 per month4. Since prey base is likely to also be similar to 

that of Guam, we estimate a per month growth rate of 1.0399, and we set a monthly 

discount rate of 1.00165, which is equivalent to an annual discount rate of 2%.  

 

Conversations with invasive species managers suggest that there is a small incipient 

population of BTS on Saipan. There have been 75 credible sightings of BTS on island, 

leading to zero captures. While it is possible that all 75 sightings could be due to a single 

snake, this is highly unlikely. For the purposes of this example, we suppose that the 

manager estimates that there are about 200 snakes, with a standard deviation of 100 (and 

therefore a precision of .0001). Even if the true population is drastically different from 

200, the updating process will quickly yield a better estimate.  
                                                 
4 See Burnett et al. (2006) for a detailed description of damage estimations. 
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In order to illustrate the effects of learning on the optimal species management, we 

conducted a Monte Carlo simulation and compared two strategies—one with learning 

(SL) and the other without learning (SN).  With strategy SL, the manager updates its belief 

on the probability distribution of the population size based on efforts and observed 

harvests.  Strategy SN  assumes that the manager chooses efforts in each period based on 

the initial belief about the species distribution without updating the belief over time.  

 

We assume the same initial belief about the distribution of population size:  

X0 ~ N(M0, 1/ρ0), 

where ),( 00 ρM  is specified as in the above section. Under strategy SN, the manager 

chooses 

⎭
⎬
⎫

⎩
⎨
⎧

−=
t

N
t kM

Xe
*

1,0max , t=0,1,2, …,T,      (41) 

where X* represents the steady-state species population size in the deterministic version 

of the model and where  

)1(1
N
ttt ekMM −=+ , t=0,1,2, …, T,       (42) 

given M0.5  Strategy SN is the optimal solution for the deterministic case 

( +∞=≡ ρ,tt XM , 0≡tε ).  The true population dynamics follows equations (31)-(33) 

where te  is replaced by N
te  . 

 

Under strategy SL, the manager chooses 

                                                 
5 Given the parameter values specified in the previous section, X* equals 329.  
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⎭
⎬
⎫

⎩
⎨
⎧

−=
t

L
t kM

Xe
*

1,0max , t=0,1,2, …, T,      (43) 

where the mean and the precision ),( ttM ρ  are updated according to the Bayes rule as 

described in equations (35), (36).  Though this strategy with learning is not necessarily 

the optimal solution to the species management problem (30)-(38), it incorporates 

learning in a simple and practically relevant manner.6  Given the resource managers’ 

information and costs constraints, a relatively simple strategy such as SL might be more 

easily implemented than an optimal strategy.  

 

We set the time horizon T to be 240 (i.e., 20 years), and computed the present values of 

species control under the two strategies by running 1,000 replications.  Out of 1,000 

replications, the present-value return with SN  exceeded the present-value return with SL 

for only 41 times.  The absolute value of the present-value return—the present-value total 

cost—without learning was more than 6 times as large as the average present-value total 

cost with learning. This experiment implies that the value of information through species 

control can be significantly large.   

 

Figures 1 and 2 describe the population dynamics and the effort profiles in two 

representative trials. In each figure, the top panel describes the true species population 

dynamics while the bottom panel lists the time profile of efforts under the two strategies.  

Figure 1 represents a scenario where strategy SN  resulted in the extinction of species 

                                                 
6 The effort decision in equation (43) is an example of “constant escapement policy.”  When a constant 
escapement policy is optimal in a deterministic resource-use model, it is not necessarily optimal in the same 
model with uncertainty (Clark and Kirkwood 1986, Sethi et al. 2005) while it is under a certain condition 
(Reed 1979).  
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while strategy SL  caused the population size to fluctuate around the certainty-equivalent 

steady state X* =329.  Though the long-run species population is larger under learning, 

the present-value total cost was 8% smaller than under no learning.  Figure 2 

demonstrates a contrasting case where that species control without learning resulted in 

insufficient effort decisions and a failure to control invasion.  In this case, the present-

value total cost under learning was about 1/12 of the present-value cost without learning.  

In all trials, the fluctuations in the effort levels under learning are larger than the 

fluctuations without learning: under learning, updated information allows the managers to 

change the efforts flexibly. Such flexible updating allows the manager to achieve, on 

average, a larger expected present-value return.      
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Figure 1. Species population dynamics and effort profile (I). 



 24

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9
x 105 Species population dynamics

Time

S
pe

ci
es

 p
op

ul
at

io
n 

si
ze

 

 
Learning
No learning

 

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Effort profile

Time

E
ffo

rt 
le

ve
ls

 

 
Learning
No learning

 
Figure 2. Species population dynamics and effort profile (II). 
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5. Concluding Remarks 

 

Optimal management of an invasive species is challenging when the actual population 

being controlled is uncertain. However, economists and managers do have tools available 

to them, some relatively simple to use, to help correct for these inaccuracies.  In this 

paper, we developed a framework to compute the optimal invasive species management 

where the resource manager can update their belief about uncertain species population 

using Bayesian methods.  When effort spent on controlling the population not only 

lowers future expected population but also provides the manager with more precise 

estimates for the future, early control efforts become even more important than in models 

where invasive populations are known. We derived this analytical result using an 

example in which a binomial process is used to control the population.   

 

By comparing the outcomes of invasive species management with and without learning, 

we can compute the value of additional information due to learning.  In order to illustrate 

the application of our Bayesian model, we parameterized it to analyze BTS control in 

Saipan and estimate the value of information.  A Monte Carlo simulation result indicates 

that learning reduces the cost of species control and damages in almost all cases.  On 

average, the average cost with learning was 1/6 of the cost without learning.  These 

results suggest that a traditional framework to analyze biological invasion given 

deterministic species population will not provide efficient management strategies and that 

value of information due to learning can be significantly large.   
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The model developed in this paper can easily be extended in a myriad of directions. 

Population estimation through stochastic harvesting processes is useful in any setting, but 

it is even more useful when either growth is uncertain or when the populations are subject 

to random shocks. While estimation techniques doubtlessly become less precise in such 

cases, continual updating of the population is even more necessary.  

 

Not all resource managers have the benefit of having well calibrated control techniques 

where the percent of the population controlled is known. If this model were extended to 

include updating of the efficacy of the control techniques, then it would allow managers 

to learn not only about the species population, but also about their own control techniques 

over time. Such a model would also be necessary if members of the controlled species are 

heterogeneous in their catchability. In such a case, catchability of the population would 

naturally decline with time as the easily catchable are caught. Analysis of these issues are 

left for future research. 
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Appendix: Cost of removal 

 

In a recent study, Gordon Rodda of U.S. Geological Survey examined the catchability of 

snakes on a 5 hectare enclosed plot in Guam. Although a large degree of individual 

heterogeneity was found, BTS in the experiment had an average of a 16.36% chance of 

being caught on a given night of trapping. Saipan is approximately 12,043 hectares in 
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area, all of which is potential snake habitat. With the aid of Gordon Rodda, we estimate 

the cost per night of trapping per 5 hectare plot to be around $150. Thus, using the 

definition of θ, above, our costs of effort on Saipan will be:  

12,043 ha. 1*$150 / plot * *log(1 ) $2,023,177 log(1 )
5 ha./plot log(.163564)

e e− ≈ − − .  (44) 

 


