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Abstract

We consider payment schemes in experiments that model infinite-horizon games by

using random termination. We compare paying subjects cumulatively for all periods

of the game; with paying subjects for the last period only; with paying for one of

the periods, chosen randomly. Theoretically, assuming expected utility maximization

and risk neutrality, both the cumulative and the last-period payment schemes induce

preferences that are equivalent to maximizing the discounted sum of utilities. The last-

period payment is also robust under different attitudes towards risk. In comparison,

paying subjects for one of the periods chosen randomly creates a present-period bias.

Experimentally, we find that the cumulative payment appears the best in inducing

long-sighted behavior.
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1 Motivation

Significant attention in experimental research is recently paid to dynamic infinite-horizon

settings. Such settings have been used to study asset markets (Camerer and Weigelt 1993),

growth models (Lei and Noussair 2002), games with overlapping generations of players (Of-

ferman et al. 2001), and infinitely-repeated games (Dal Bo 2005). To model infinite-horizon

games with discounting, experimental researchers use the random termination method: given

that a period is reached, the game continues to the next period with a fixed probability p.

Experimental research shows that the random termination method is indeed more successful

in representing infinite-horizon games than continuing a game for a finite, known or unknown

to subjects, number of periods (Offerman et al. 2001; Dal Bo 2005).

The infinite-horizon models assume that the subjects maximize the infinite sum of their

discounted payoffs across periods, and thus call for paying the subjects cumulatively for

all periods. Indeed, such cumulative payment schemes are used in all studies cited above.

However, the cumulative payment has two limitations. First, a random-termination game

that continues into the next period with probability p is theoretically equivalent to an infinite-

horizon game with the discount factor p only under the assumption of risk neutrality. Risk

aversion may invalidate the cumulative payment scheme, at least theoretically. Second, a

possible concern for researchers is that large variations in the actual number of periods

realized under random termination may result in large variations in cumulative payments to

subjects, even when per period earnings are fairly predictable. Furthermore, to preserve the

incentives, researchers in some cases have to pay the same stream of cumulative payoffs to

more than one experimental participant. For example, in the growth experiment by Lei and

Noussair (2002), a horizon that did not terminate within a scheduled session time continued

during the next session; if a substitute took place of the original subject in the continuation

session, then both the substitute and the original subject were paid the amount of money that

the substitute made. In the inter-generational infinite-horizon dynamic game experiment by

Sherstyuk et al. (2009), each period game was played by a new generation of subjects, who

were paid their own payoffs plus the sum of the payoffs of all their successors. Such payment

scheme, while necessary to induce proper dynamic incentives, produced a snowball effect on

the experimenter expenditures.

The objective of this paper is to explore payment schemes that may provide a reason-

able alternative to cumulative payments in random-termination games. Ideally, we seek a

payment method that would allow for various attitudes towards risk, and at the same time

reduce variability of the experimenter budget.

We explore two alternatives to the cumulative payment scheme, and their consequences
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for subject motivation in random-termination games. One alternative is the random selection

payment method (Davis and Holt 1993) that is often used in individual choice or strategic

game experiments containing multiple tasks. Each subject is paid based on one task, or a

subset of tasks, chosen randomly at the end of the experiment (e.g., Charness and Rabin

2002; Chen and Li 2009). Aside from avoiding wealth and portfolio effects that may emerge

if subjects are paid for each task (Holt 1986; Cox 2010),1 there are also added advantages in

economizing on the data collection efforts (Davis and Holt, 1993).

Another alternative to the cumulative payment is the last period payment, under which

the subjects are paid for the last realized period of the game. We show that, theoretically,

paying the subjects their earnings for just the last period of the horizon induces preferences

that are equivalent, under expected utility representation, to maximizing the infinite sum

of discounted utilities across periods. Moreover, unlike the cumulative payment, it does not

require risk neutrality.

In Section 2, we present a theoretical comparison of the three payment methods discussed

above. In Sections 3 and 4, we compare the payment alternatives experimentally. Section 5

concludes.

2 Theory

Consider an infinite-horizon dynamic game, where t = 1, .. refers to the period of the game.

Let δ be a player’s discount factor (0 < δ < 1) and πt the player’s period-wise payoff in

period t. The player’s life-time payoff is given by

U ≡

∞∑

t=1

δt−1πt. (1)

To implement such dynamic game in economic laboratory, experimenters have their subjects

play the game where one period is followed by the next in a matter of a few minutes, and

hence the subjects’ time preference would not matter. Instead, the discount factor is induced

by the possibility that the game may terminate at the end of each period.2 The following

1Holt (1986) shows that the random selection method may be used if subjects behave in accordance with

the independence axiom of expected utility theory. Several carefully designed experiments give reassuring

evidence for using the random selection method in individual choice experiments (Starmer and Sugden 1991;

Cubitt et. al. 1998; Hey and Lee 2005). We are unaware of studies that test the validity of the random

selection method in game theory experiments.
2Fudenberg and Tirole (1991, p. 148) note that the discount factor in an infinitely repeated game can

represent pure time preference, or the possibility that the game may terminate at the end of each period.
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random termination rule is used: given that period t is reached, the game continues to the

next period t + 1 with probability p (such that 0 < p < 1). Then the game ends in the first

period with probability 1 − p, the second period with probability p(1 − p), the third with

probability p2(1−p), and so on. The following describes the induced discount factor for each

subject under alternative payment schemes.

Assume risk neutrality first. Implications of risk aversion will be discussed at the end of

this section.

Cumulative payment scheme Suppose the subjects are informed that if the game ends

in period T , then each subject receives the sum of the period-wise payoffs from all realized

periods 1, . . . , T . Given the random variable T , the expected payoff to a player is given by:

(1 − p)π1 + p(1 − p)[π1 + π2] + p2(1 − p)[π1 + π2 + π3] + . . .

= π1

{
(1 − p) + (1 − p)p + (1 − p)p2 + . . .

}
+ π2

{
(1 − p)p + (1 − p)p2 + (1 − p)p3 + . . .

}

+π3

{
(1 − p)p2 + (1 − p)p3 + (1 − p)p4 + . . .

}
+ . . .

= π1(1 − p) ·
1

1 − p
+ π2(1 − p) ·

p

1 − p
+ π3(1 − p) ·

p2

1 − p
+ · · · =

∞∑

t=1

pt−1πt. (2)

Thus p (equal to one minus the termination probability) represents the period-wise discount

factor. With p set equal to δ, the expected payoff under the cumulative payment scheme is

equivalent to U , the payoff under the original dynamic game given in equation (1).

Random payment scheme Under this scheme, the payoff to each subject, if the game ends

in period T , is randomly chosen from all the realized period-wise returns over T periods,

π1, π2, . . . , πT . Then the expected payoff is:

(1 − p)π1 + p(1 − p)
1

2
[π1 + π2] + p2(1 − p)

1

3
[π1 + π2 + π3] + . . .

= π1

{
(1 − p) + (1 − p)p

1

2
+ (1 − p)p2

1

3
+ . . .

}

︸ ︷︷ ︸
δr

1

+π2

{
(1 − p)p

1

2
+ (1 − p)p2

1

3
+ (1 − p)p3

1

4
+ . . .

}

︸ ︷︷ ︸
δr

2

+π3

{
(1 − p)p2

1

3
+ (1 − p)p3

1

4
+ (1 − p)p4

1

5
+ . . .

}

︸ ︷︷ ︸
δr

3

+ . . . (3)

This implies a discount factor that is different from the one given under the objective function

displayed in equation (1). In particular, the random payment induces players to discount
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future returns more heavily than the cumulative payment. Therefore, the subjects are ex-

pected to be more myopic under the random payment. To see this, normalize the discount

factors under the cumulative payment, by multiplying them by (1− p), so that they sum up

to 1:

δc
1 = 1 − p, δc

2 = (1 − p)p, δc
3, (1 − p)p2, . . . .

(The superscript c represents the cumulative payment rule.) Note that
∑∞

t=1
δc
t = 1. The

discount factors under the random payment rules, δr
1, δ

r
2, . . . are already normalized: they

also satisfy

∞∑

t=1

δr
t =

1 − p

p
·




p +p2

2
+p3

3
+p4

4
+ · · ·

+p2

2
+p3

3
+p4

4
+ · · ·

+p3

3
+p4

4
+ · · ·

+p4

4
+ . . .

+
.. .




=
1 − p

p
(p + p2 + p3 + . . . ) =

1 − p

p

p

1 − p
= 1.

Then we observe that

δc
1 = 1 − p < δr

1 for any p between 0 and 1,

i.e. the random payment rule places a higher weight on the current payment irrespective of

the termination probability.

Figure 1 illustrates the normalized discount factor schedules with p = 3/4 (the value used

in our experiments). The figure verifies that the random payment rule puts a larger weight

on the initial period than the cumulative payment does.

FIGURE 1 AROUND HERE

We further note that the random payment rule induces time inconsistency. This is

because, as equation (3) indicates, the periodwise discount factor δr
t+1/δ

r
t changes across

periods. The optimal plan this period becomes suboptimal in the next period. This would

be another undesirable feature of this payment rule.

Is there any payment scheme, other than the cumulative one, that induces the same

discounting as the objective function (1)? We now demonstrate that such discounting can

be achieved by paying each subject based on their last period.

Last-period payment scheme Each subject receives the payoff for the last period T .

With probability (1 − p) the game lasts for only one period and the subject receives π1.
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With probability (1 − p)p the game lasts for exactly 2 periods and the subject receives π2,

etc. Hence, the subject’s expected payoff is

(1 − p)π1 + p(1 − p)π2 + p2(1 − p)π3 + · · · = (1 − p)
∞∑

t=1

pt−1πt. (4)

This is exactly (1 − p) times the expected payoff for the cumulative payment case.

Hence, the theory predicts that, up to the normalization factor (1 − p), the incentives

induced under the last period payment are the same as those induced under the cumulative

payment, with both being consistent with the objective function (1).

If the payoffs are replaced by utilities, and if the subject’s utility is concave in the payoffs,

then the above equivalence result does not hold. Specifically, the subject’s expected utility

under the cumulative payment scheme is not equivalent to U , the subject’s utility in the

infinite-horizon setup defined in equation (1). This discrepancy implies that the subjects

would behave more myopically under the cumulative payment scheme than what the payoff

specification U would predict. This has been pointed out in the literature (e.g. Lei and

Noussair 2002);3 Appendix B presents the proof of this statement for the dynamic game

considered in Section 3. However, as it is obvious from equation (4), the subject’s expected

utility under the last-period payment scheme is still equivalent to U defined in equation (1).

Therefore, provided that the subjects may be risk averse, the last-period payment scheme

induces the players’ objective function under the original dynamic game more accurately

than the cumulative payment scheme.

3 Game setting and experimental design

We now present experimental evidence on the effect of payment schemes on subject behavior

from the following infinite-horizon games with dynamic externalities. This game has been

studied in Dutta and Radner (2009) and in Sherstyuk et al. (2009) to address the problem

of climate change mitigation among countries.

Model settings There are N ≥ 2 players. In each period t = 1, 2, . . . , each player i

chooses an action (emission level) xit, where 0 ≤ xit ≤ x̄, and x̄ > 0 represents each player’s

maximum feasible action. Emission xit generates current benefits to player i in period t, but

increases the global pollution stock S that imposes a negative dynamic externality on all

players. The period-wise return of player i, πi, in period t consists of two components: the

3In the context of a growth model, Lei and Noussair (2002) note that risk averse agents would behave

more myopically as they would underweight the future uncertain payoffs relative to the risk neutral agents.
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benefit from its own action, Bi(xit), and the damages due to the existing pollution stock,

Di(St):

πi(xit, St) = Bi(xit) − Di(St). (5)

We assume that all players have the same return functions and omit the player subscript from

the return functions in what follows. The benefit function is quadratic, B(x) = ax − 1

2
cx2,

and the damage function is linear, D(St) = dSt, where the parameter d > 0 represents the

marginal damages due to the stock of pollution.

The pollution stock S evolves across periods according to the following equation:

St+1 = λSt + Xt, t = 0, 1, . . . , (6)

where λ ∈ [0, 1] represents the retention rate of the pollution stock, and Xt ≡
∑

i xit is the

total emission. The initial stock S0 is given.

Given a discount factor δ ∈ (0, 1), player i’s payoff is given by the present value of the

period-wise returns
∑∞

t=0
δtπi(xit, St). There is no uncertainty in the model. In each period,

each player observes the history of pollution stock levels and all players’ previous actions.

We consider the following benchmark solutions to the model.

First Best solution (FB): This cooperative emission allocation maximizes the sum

of N players’ payoffs and hence solves the following problem:

max
∞∑

t=0

N∑

i=1

δtπi(xit, St) subject to the constraints (6). (7)

The solution to this problem generates a sequence of actions {x∗
t}

∞
t=0 where x∗

t = {x∗
it}

N
i=1.

With the linear damage function, the solution is constant over periods and hence independent

of stock level. The solution satisfies B′(x∗
it) = δNd

1−δλ
for all i, t. Given infinite horizon, the

folk theorem for dynamic games (Dutta 1995) implies that, under some parameter values,

the first best outcome is supportable as a subgame perfect equilibrium outcome (e.g. with

Nash reversion trigger strategies).

Markov Perfect equilibrium (MP): There are many subgame perfect equilibria in

this dynamic game. In a Markov perfect equilibrium, each player conditions its action in

each period only on the current pollution stock. For the above model specification, there

exists a unique Markov perfect equilibrium of a simple form where each player’s action is

independent of the pollution stock (and hence constant). The solution is given by {x̃i}
N
i=1

such that B′(x̃i) = δd
1−λδ

for all i. We focus on this Markov perfect equilibrium (MP) as

a natural benchmark for the noncooperative outcome where the players take the dynamic

externalities into account.
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Myopic Nash solution (MN): If the dynamic externality is ignored by players, as in

the case with δ = 0, then the Nash equilibrium action of player i, x̂i, solves B′(x̂i) = 0. We

call {x̂i}
N
i=1 the Myopic Nash (MN) solution.

Experimental parameters Groups consisting of N = 3 subjects each participated in

sequences of decision periods. The following parameter values were used in the experiment:

a = 208, c = 13, d = 26.867, λ = 0.3, δ = 0.75, implying the following stationary per person

emissions, as discussed above: First Best (FB): x∗ = 10; Markov Perfect (MP): x̃ = 14, and

Myopic Nash (MN): x̂ = 16. (The player’s subscript is dropped here.) The starting stock

S0 was set at the First Best steady state level.

Given these parameter values, a Nash-reversion trigger strategy where a deviation results

in MP strategies supports the First Best solution as a subgame perfect equilibrium outcome

(see Appendix A).

In each decision period, each subject in a group chose between 1 and 11 tokens, which

were translated into the emission levels using the following linear transformation function:

xit = 2yit + 2, where yit is subject i’s token choice in period t. This allowed to reduce the

subject decision space to 11 choices. The parameter values are chosen so that all theoretical

benchmarks (First Best: yi = 4; Markov Perfect: yi = 6; and Myopic Nash: yi = 7) for indi-

vidual token investments are distinct from each other and integer-valued. The cooperative

FB outcome path gives the subjects substantially higher expected stream of payoffs than the

MN or the MP outcome.

Treatments To study the effects of payment schemes on subject behavior, we consid-

ered the following three treatments which differed in the way the subject total payoffs were

determined. (As before, T denotes the last realized period in the game):

1. Cumulative payment: Each subject receives the sum of the period-wise returns from

all periods 1, . . . , T .

2. Random-period payment: The payoff to each subject is randomly chosen from all the

realized period-wise returns over T periods.

3. Last-period payment: Each subject receives the period-wise return in period T , i.e.

the last realized period, as the payoff.

Based on the analysis from Section 2, we hypothesize that the Random-period payment

treatment should result in more myopic (higher) token choices than either the Cumulative

or the Last-period payment treatments. The Cumulative and the Last-period treatments
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should result in the same token choices, provided the subjects are risk neutral. If the subjects

are risk averse, then the theory (see Appendix B) suggests the actions will be more myopic

(imply higher token choices and higher steady state pollution stock) under the Cumulative

payment than under the Last-period payment.

Procedures The experiments were computerized using z-Tree software (Fischbacher, 2007).

Several (up to three) independent groups of subjects, with three subjects in each group, par-

ticipated in each experimental session. The actual game was preceded by experimental

instructions (included in the Supplementary materials) and five-period training for which

the subjects were paid a flat training fee. Groups of subjects made token decisions in all

decision periods until the game stopped.4 To help with decision-making, the subjects were

provided with payoff calculators, as well as tabular and graphical information about the

current payoffs from own token choices and the effect of group token choices on future pe-

riods’ payoffs; see Figure 3 in Appendix C. In addition, to help the subjects coordinate on

outcomes, at the conclusion of each period the subjects were asked to suggest token levels

and type verbal advice to other group members. These procedures were the same in all three

treatments of the experiment.

A randomization device (an eight-sided die or a bingo cage) was used after each period to

determine whether the game continued to the next period. Given δ = 0.75, the continuation

probability was set at 3/4, implying the expected length of 4 period in each game. Only

one dynamic game per group was conducted in each session. We chose not to restart short

games if they ended early, for the reason that it could have an effect on subject motivation

in each game. At the end of the session, each subject responded to a short post-experiment

survey (included in the Supplementary materials) which contained questions about one’s

major, the number of economics courses taken, and the reasoning behind token choices in

the experiment.

We allowed enough time for each session to guarantee that each game terminated within

the allocated time interval. Experimental sessions lasted up to three hours each, including

4In the instructions, each period was called a “series.” Each period consisted of three decision trials. At

the end of the period, one of the trials was chosen randomly as a paid trial, and was used to determine

next period’s stock level. Having more than one trial in a period allowed the subjects to better learn the

behavior of other subjects in their group, while reducing the dynamic externalities (effect on next period’s

stock) from such learning. As the number of trials is fixed and known to subjects, it does not change the

subject motivation in the way a random or an unknown number of trials would. Our data indicate that the

subject decisions were rather consistent across trials within periods. In what follows, we will therefore focus

on the data analysis for the chosen (paid) trials of each period; see Section 4 below.
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instructions and training. The exchange rates were set at $100 experimental = $1 US in the

Cumulative treatment, and $30 experimental = $1 US in the Last-period and the Random-

period treatments.5 The average payment was $32.24 per subject, including $10 flat training

fee.

4 Results

The experiments were conducted at the University of Hawaii at Manoa between June 2008

and June 2010. The total of 81 subjects participated; they were undergraduate students,

with about a half majoring in social sciences or business. The mean number of economics

courses taken by the participants was 1.5 in the Cumulative treatment, 1.67 in the Last-

period treatment, and 1.27 in the Random-period treatment; in all treatments, the median

number of economics courses taken was one.

Six to fifteen independent dynamic games, with three participants each, were conducted

per treatment. Some games ended after the first period. The data analysis revealed no

differences in first-period token choices among any two treatments; for this reason, we exclude

one-period-long games from the analysis, and focus on the games that lasted for at least two

periods. This leaves us with six independent observations (games) per treatment.

Table 1 displays descriptive statistics by treatment, focusing on per period group token

contributions. Figure 2 shows the group token dynamics across periods by treatment. Lower

token levels imply more long-sighted, i.e., less myopic, behavior. Three theoretical bench-

marks, given p = 3/4, are also exhibited on the graphs: First Best, or Socially Optimal

group tokens, FB=12; Markov Perfect Equilibrium group tokens, MP=18; and Myopic Nash

Equilibrium group tokens, MN=21.

TABLE 1 AND FIGURE 2 AROUND HERE

The table and the figure suggest a few observations. First, in contrast to the theoretical

prediction under risk neutrality, the subject behavior under the Last-period payment was

quite different from the behavior under the Cumulative payment. Although the overall

average group tokens were not significantly different between the Cumulative and the Last-

period payment (13.56 group tokens under Cumulative as compared to 14.17 under Last-

period), the variance of group tokens across games was much lower under the Cumulative

than under the Last-period payment: 1.49 tokens as compared to 5.61 tokens, respectively.

5We set the exchange rates in the Cumulative, the Random-period and the Last-period treatments based

on pilot runs, so that the average payments to subjects would be about the same in all treatments.
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Furthermore, group tokens under the Cumulative payment exhibited a decreasing trend over

time; groups invested on average 16.17 tokens in the first period, as compared to 12.5 tokens

in the last period (p=0.0938, Wilcoxon sign rank test). This suggests that the subjects

in this treatment were learning to play more long-sightedly as the game progressed. In

contrast, the group tokens did not significantly change from the first to the last period under

the Last-period payment; the groups invested, on average, 14.33 tokens in the first period,

as compared to 15.5 tokens in the last period. Consequently, while the tokens in the first

period were not significantly different between these two treatments, they became different

at 10% significance level in the last period of the game (p=0.066, Wilcoxon Mann-Whitney

rank sum test).

The post-experimental questionnaire confirms the observed difference in behavior be-

tween the Cumulative and the Last-period treatments: The mean response to the question

“How many tokens would you order if you are to participate again in this experiment?”

was 4.11 tokens in the Cumulative treatment, and 5.17 tokens in the Last-period treatment;

the median responses were 4 and 5.5 tokens for the Cumulative and for the Last-period

treatments, respectively. We summarize:

Observation 1 Subject behavior under the Cumulative payment was less variable than under

the Last-period payment. Further, group tokens decreased from the first to the last period

under the Cumulative payment, indicating a tendency towards a less myopic behavior. No

such tendency was observed under the Last-period payment.

Next, our experimental data suggest that, consistent with the theoretical predictions, the

subjects behaved more myopically under the Random-period pay treatment than under the

Cumulative payment treatment. While the first period group tokens were no different under

these two treatments, all other descriptive statistics, including average group tokens, the

tokens in the last periods, and the average group tokens in early and late periods were all

statistically different (higher) at 5% (and often at 1%) significance level under the Random-

period treatment than under the Cumulative treatment. Unlike under the Cumulative pay-

ment, the group tokens did not significantly change from the first (16.17 tokens average)

to the last period (18.17 tokens average) under the Random-period payment; clearly, there

was no decreasing trend in the token levels. The overall average group tokens under the

Random-period payment were at 17.83, the highest among all three treatments, which was

significantly different from the Cumulative group token average (p=0.0076, WMW test). We

also note that the variance of average tokens across games in the Random-period payment

treatment was 2.42, which was higher than in the Cumulative treatment, but lower than

in the Last-period treatment. Finally, the mean response to the post-experiment question
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“How many tokens would you order if you are to participate again in this experiment?” in

the Random treatment was 5.22 tokens, and the median was 6 tokens; both were the highest

among all three treatments.6 In sum,

Observation 2 Consistent with the theoretical prediction, the subjects behaved more myopi-

cally under the Random-period payment treatment than under the Cumulative payment.

Finally, the subjects behavior under the Last-period and the Random-period payment

treatments also appears quite different, although the differences are statistically insignificant.

The latter is likely due to a large variation in the Last-period treatment observations across

individual games. On average, however, the differences are in the direction predicted by the

theory discussed in Section 2, with Last-period average group tokens at a lower (less myopic)

level of 14.17, as compared to Random-period average group tokens of 17.83.

5 Summary

To summarize, comparison of the three payment schemes studied in the context of dynamic

games with random termination indicate the following. In line with the theoretical predic-

tion, the Random-period pay treatment results in more myopic behavior than the Cumulative

payment. This is likely due to a higher discounting induced by the Random-period payment

in combination with random termination.

Further, the Cumulative payment and the Last-period payment schemes imply, under

risk neutrality, the same discount factor theoretically, but appear to be quite different be-

haviorally. Specifically, the Cumulative payment appears to induce less noisy and more

long-sighted behavior than the Last-period payment.

We briefly discuss several hypotheses that could potentially explain the differences be-

tween the Cumulative and the Last-period payment treatments:

1. Risk aversion. The differences in behavior between the Cumulative and the Last-period

payment treatments are unlikely to be explained by subject risk aversion alone. The theo-

retical analysis (Appendix B) indicates that if the subjects are risk averse, then the steady

6Advices that the subjects sent to their group members at the conclusion of periods give additional support

that the random selection of the paid period made the subjects reason more myopically. For example, one of

the subjects (ID 5, Game 1, Random treatment) sent the following advice to his group members: “7 again.

Hope it ends by now and the series 1 is selected !!!” In comparison, many subjects in the Cumulative and in

the Last-period treatments advised their group members to restrain token levels for the benefit of the future

payoffs. E.g.: “I think the best number to order is 4 because that way you get the most consistent payoff

from trial to trial no matter how long it goes.” (ID 4, Game 2, Cumulative treatment).
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state stock level for the dynamic game considered would be higher under the Cumulative

payment than under the Last-period payment. This would imply that if our participants

are risk averse, they would invest more tokens under Cumulative than under the Last-period

payment treatment. Yet, we observe the opposite.

2. Risk aversion combined with wealth effects. Following Mas-Colell et al. (1995, p.

192), “it is a common contention that wealthier people are willing to bear more risk than

poor people.” If experimental subjects exhibit decreasing absolute risk aversion over the

payoff ranges used in the experiment, then accumulated payoffs in the Cumulative payment

may make people less risk averse, leading to lower token investments in later periods. In

contrast, as no payoffs are accumulated under the Last-period payment, no decreasing trend

in tokens should be expected. This is consistent with what we observe in our experiments.

3. Risk aversion combined with higher stakes for each decision under the Last-period

payment as compared to the Cumulative payment. Holt and Laury (2002) demonstrate that

higher stakes lead to greater risk aversion. Theoretically, this may be explained by prefer-

ences that exhibit decreasing absolute risk aversion and increasing relative risk aversion. If

our experimental subjects are influenced by the stakes per decision, then they may choose

higher (less risky) token levels under the Last-period payment as compared to the Cumu-

lative payment because of higher per-period stakes under the Last-period payment. This is

consistent with our experimental observations.

4. Differences between treatments in subjective probabilities of the game ending after

each given period. This cannot be ruled out, although we do not have a reasonable expla-

nation for why the payment rule would affect subject perception about the game ending.7

5. Unobserved differences (such as in the degree of sophistication) between participants

in the Cumulative and the Last-period pay treatments. As discussed at the beginning of

Section 4, the mean and median numbers of economics courses taken by the subjects are

indistinguishable between any two treatment. This gives us grounds to believe that the

subjects’ levels of economic reasoning should be comparable across treatments.

6. Specificity of the dynamic game employed in our experimental design. The dynamic

7Responses to post-experiment questionnaire indicate that some subjects may have believed that the

probability of the game ending increased over periods. However, this was not specific to any one of the

treatments. Here are some examples of subject responses: Question: “What do you think is the best number

of tokens to order and why?” Answer: “Lower first, then higher” (ID 1, Game 1, Random-period payment

treatment). Question: “How did you make your decision to order [tokens]?” Answer: “Begin conservatively

and gradually order in more aggressive numbers because there is a higher possibility that the experiment

might end as you go along..” (ID 3, Game 3, Cumulative treatment). We do not have sufficient evidence to

reject the hypothesis that the subjective probabilities of the game ending were the same across treatments.
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externality game that we use is rather complex along several dimensions. First, unlike a

repeated game, it evolves from period to period. Second, the action space in each period

consists of eleven choices, which adds complexity as compared to, for example, a binary

choice game. It is possible that the Last-period payment scheme could work better in in-

ducing dynamic incentives in a simple two-by-two repeated game, such as the Prisoners’

dilemma. It is also possible that the differences in subject behavior observed under the two

payment schemes would disappear with more experienced subjects. What our experimental

evidence suggests, however, is that in contrast to the theoretical predictions, there are dy-

namic settings for which the Last-period payment cannot be relied upon to induce dynamic

incentives as well as, or better, than the Cumulative payment.

There is insufficient evidence to distinguish which of the above factors are responsible

for the differences between the Cumulative and the Last-period payment schemes within the

framework of this study. We conjecture that risk aversion, wealth effects, stakes and game

complexity all may play a role. However, we may draw two conclusions from our research.

First, neither the Last-period payment nor the Random-period payment are reliable alter-

natives to the Cumulative payment scheme in inducing long-sighted incentives in dynamic

games. Second, the Random-period payment appears to be a good alternative to the Cumu-

lative payment for repeated (or more generally dynamic) settings where experimenters seek

to minimize the repeated game effects and focus experimental subjects’ attention solely on

the decisions in the current decision period. Examples of the latter may include auctions,

markets, and other settings, where repetition is needed for subjects to gain experience with

the game, but the supergame effects which come from repetition are to be minimized.

Appendix A

Supporting the first best solution with a trigger strategy

Can cooperation be supported as a subgame perfect equilibrium outcome given the parameter

values in the experiment? Let S0 = S∗ where S∗ is the steady state under the cooperative

outcome:

S∗ = λS∗ + X∗, i.e. S∗ =
X∗

1 − λ
,

where X∗ = Nx∗ and x∗ = 10, the optimal action. The payoff under cooperation is

Π∗ ≡
∑

t

δt
[
ax∗ −

c

2
x∗2 − dS∗

]
=

ax∗ − c
2
x∗2 − dS∗

1 − δ
.
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Consider a trigger strategy where deviation from x∗ by a player induces the Markov perfect

equilibrium profile (where every player chooses x̃ forever). Suppose a player deviates from

cooperation in period 1 (or any period preceded by a history of cooperative play). With the

choice of one-shot deviation xd, the deviating player’s immediate periodwise payoff is

πd = axd −
c

2
xd2 − dS∗.

The stock level immediately after deviation is

Sd ≡ λS∗ + 2x∗ + xd.

Then, under the MP actions, the stock level evolves according to St+1 = St + X̃:

S0 = Sd, S1 = λSd + X̃, S2 = λS1 + X̃ = λ2Sd + (1 + λ)X̃, . . .

St = λtSd + (1 + λ + · · ·+ λt−1X̃) = λtSd +
X̃

1 − λ
− λt ·

X̃

1 − λ
.

So the continuation payoff for the player who deviated, after deviation, is given by

Πd
cont ≡

∞∑

t=0

δt
[
ax̃ −

c

2
x̃2 − dSt

]
,

where
∞∑

t=0

δtdSt = d

∞∑

t=0

δt

{
λtSd + (1 − λt)

X̃

1 − λ

}
=

dSd

1 − δλ
+

dX̃

(1 − δλ)(1 − λ)
.

So the present value of the payoff upon deviation is

Πd = πd + δΠd
cont.

Given the parameter values specified for the experiment, we have Π∗ ≈ 1, 114 as the payoff

upon cooperation and V d ≡ maxxd≥0 Πd(xd) ≈ 906. Hence, the above trigger strategy

supports the first best outcome.

Appendix B

Implications of risk aversion for the first best solution

Let u(πt) be each player’s utility from monetary return πt in period t where u′ > 0 and

u′′ ≤ 0. If the players are risk averse, then u′′ < 0. Suppose u(πt) replaces πt in each player’s

objective function given in equation (1):

∞∑

t=1

δt−1u(πt). (1’)
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Let S∗rn (S∗ra) be the first-best steady state stock for the original infinite-horizon model

when the players are risk neutral (risk averse). Let S∗rn
cum (S∗ra

cum) be the corresponding steady

state under the cumulative payment scheme, and S∗rn
lp (S∗ra

lp ) be the steady state under the

last-period payment scheme.

Here we prove that the first-best actions are more myopic under the cumulative payment

scheme than under the infinite-horizon game when the players are risk averse.

Proposition 1 For the model specified with equations (5) and (6), the following holds for

the steady states under alternative payment schemes.

(i) The steady states under the infinite-horizon model with objective function given by (1’)

and under the last-period payment scheme are the same regardless of the players’ risk

attitudes, i.e. S∗rn = S∗rn
lp and S∗ra = S∗ra

lp .

(ii) The steady states under the infinite-horizon model and under the cumulative payment

scheme are equivalent if the players are risk neutral: S∗rn = S∗rn
cum.

(iii) If players are risk averse, then the first-best steady state under the cumulative payment

scheme is larger than the first-best steady state under the last-period payment scheme:

S∗ra
cum > S∗ra

lp .

Proof. Part (i) follows because the expressions in equations (1) and (4) represent the same

payoffs regardless of whether πt’s are replaced with u(πt)’s. Part (ii) holds given (1) and (2)

and because we have u(πi) = πi (without loss of generality) under risk neutrality. To show

part (iii), first we show that S∗ra = S∗rn: the first-best steady state is the same regardless of

whether the players’ objective function is given by (1’) or (1) (i.e. whether the players are

risk averse or not). Given the utility function u, the first best solution solves the following

functional equation:

V (S) = max
{xi}N

i=1

N∑

i=1

u (B(xi) − dS) + δV (S ′)

subject to S ′ = λS + X and xi ≥ 0 for all i, where V is the optimal value function (the

maximum total payoffs of all players). The first order condition is given by

u′(·) · B′(xi) + δV ′(S ′) = 0 for all i,

and the envelope equation implies

V ′(S) =
∑

i

u′(·) · (−d) + δV ′(S ′)λ.
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At the steady state S∗, the above equality implies

V ′(S∗) = −u′(·)D + δλV ′(S∗),

where D ≡
∑

i d. Together with the first order condition, we have

u′B′(x∗
i ) =

u′δD

1 − δλ
, i.e. B′(x∗

i ) =
δD

1 − δλ
. (8)

This condition for the first-best steady-state token is the same under any risk attitude.

Hence, S∗ra = S∗rn = S∗.

We now show that S∗ra
cum > S∗. Under the cumulative payment scheme, the expected

payoff to each player is given by

(1−p)u(π1)+p(1−p)u(π1+π2)+(1−p)p2u(π1+π2+π3)+ · · · = (1−p)
∞∑

t=1

pt−1u
(∑t

s=1
πs

)
.

As specified in the Section 3, let πt = B(xit)−dSt and St+1 = λSt +Xt where Xt =
∑N

i=1
xit

and µt is the Lagrangian multiplier associated with the constraint St+1 = λSt + Xt. Let

Πt ≡
∑t

s=1
πs. An interior first best solution satisfies the following first-order conditions:

pt−1u′(Πt)B
′(xit) + ptu′(Πt+1)B

′(xit) + · · · − µt = 0,

−µtλ + µt−1 − pt−1u′(Πt)D − ptu′(Πt+1)D − · · · = 0,

for t = 1, 2, . . . where D ≡
∑N

i=1
d. Under the steady state (xit = x for all i, t), it follows

that

−pt−1B′(x){u′(Πt) + pu′(Πt+1) + . . . }λ + pt−2B′(x){u′(Πt−1) + pu′(Πt) + . . . }

−pt−1D{u′(Πt) + pu′(Πt+1) + . . . } = 0.

Divide all terms by pt−1 and arrange the terms to obtain

−B′(x){u′(Πt) + pu′(Πt+1) + . . . }λ + B′(x)

{
u′(Πt−1)

p
+ u′(Πt) + pu′(Πt+1) + . . .

}

−D{u′(Πt) + pu′(Πt+1) + . . . }

= B′(x)
u′(Πt−1)

p
+ {(1 − λ)B′(x) − D}{u′(Πt) + pu′(Πt+1) + . . . } = 0.

If the players are risk neutral (i.e. u′′ = 0), then u′ is constant and the above equality

simplifies to
B′(x)

p
+

(1 − λ)B′(x) − D

1 − p
= 0, i.e. B′(x) =

pD

1 − pλ
.
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This is the steady-state condition for the first best solution under risk neutrality (equation 8).

In contrast, if u′′ < 0, we have u′(Πt) > u′(Πt+1) > . . . . It follows from (1− λ)b′(x)−D < 0

that

0 = B′(x)
u′(Πt−1)

p
+ {(1 − λ)B′(x) − D}{u′(Πt) + pu′(Πt+1) + . . . }

> B′(x)
u′(Πt−1)

p
+ {(1 − λ)B′(x) − D}u′(Πt−1)

1

1 − p
.

The last inequality implies B′(x) < pD

1−pλ
. Because B′′ < 0, this inequality implies that the

steady-state solution x under the cumulative payment scheme is larger than the steady-state

solution specified by (8). Hence, S∗ra
cum > S∗ = S∗

lp.

Remark. It is straightforward to show that the same properties hold for the Markov-perfect

equilibrium steady-state stocks under alternative payment schemes (i.e. equivalence of the

infinite-horizon model and the last-period payment scheme, and a larger steady state under

the cumulative payment scheme). The same properties regarding the last-period and cumula-

tive payment schemes hold in other general contexts such as neoclassical growth models (Lei

and Noussair 2002) and infinitely repeated games (as opposed to a special class of dynamic

games considered here).

Appendix C

An example of subject payoff table

FIGURE 3 AROUND HERE
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Table 1: Desciptive statistics, by treatment (excluding  one‐period‐long games)

Cumulative 
Pay

Last Period 
Pay

Random Period 
Pay

WMW test WMW test WMW test

Variable Mean Mean Mean p‐value, p‐value, p‐value,
(Std. Dev.) (Std. Dev.) (Std. Dev.) Cum==Last Cum==Random Last==Random

game length, periods 7 5.67 6 ‐‐ ‐‐ ‐‐
(1.67) (3.39) (4.10)

first period group tokens  16.17 14.33 16.17 n/s n/s n/s
(4.92) (6.44) (4.22)

last period group tokens 12.50 15.50 18.17 0.066 0.0022 n/s
(2.07) (5.75) (1.72)

average group tokens 13.56 14.17 17.83 n/s 0.0076 n/s
(1.49) (5.61) (2.42)

avg tokens, early (periods 1‐4) 14.33 14.19 17.29 n/s 0.0325 n/s
(2.16) (6.59) (3.03)

avg tokens, late (periods 5‐end) 12.69 14.00 17.43 n/s 0.0095 0.1649
(1.93) (2.59) (2.35)

Number of obs (games), all 6 6 6
Number of obs (games) of length above 4 6 2 4
Signrank test p‐value, First==Last period 0.0938 n/s n/s
Signrank test p‐value, Avg early==Avg late 0.1094 n/s 0.1250
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Figure 1: Discount factor schedule under alternative payment rules. (p = 3/4)



Figure 2: Group token dynamics under different payment schemes
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Figure 3: An example of subject payoff table

Payoffs with Group Tokens = 21 in each series
Your Tokens Payoff Level 1 2 3 4 5 6 7 8 9 10 11
Payoff in this series 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff  in the next series 910 -483 -197 37 219 349 427 453 427 349 219 37
Payoff in two series ahead 765 -628 -342 -108 74 204 282 308 282 204 74 -108
Payoff in three series ahead 722 -671 -385 -151 31 161 239 265 239 161 31 -151
Payoff in four series ahead 709 -684 -398 -164 18 148 226 252 226 148 18 -164
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Experimental Instructions (BL)

Introduction

You are about to participate in an experiment in the economics of decision making in which you will

earn money based on the decisions you make. All earnings you make are yours to keep and will be

paid to you IN CASH at the end of the experiment. During the experiment all units of account will

be in experimental dollars. Upon concluding the experiment the amount of experimental dollars you

receive as payoff will be converted into dollars at the conversion rate of US $1 per experimental

dollars, and will be paid to you in private.

Do not communicate with the other participants except according to the specific rules of the exper-

iment. If you have a question, feel free to raise your hand. An experimenter will come over to you and

answer your question in private.

In this experiment you are going to participate in a decision process along with several other

participants. From now on, you will be referred to by your ID number. Your ID number will be

assigned to you by the computer.

Decisions and Earnings

Decisions in this experiment will occur in a number of decision series. At the beginning of the first

decision series, you will be assigned to a decision group with 2 other participant(s). You will not be

told which of the other participants are in your decision group. What happens in your group has no

effect on the participants in other groups and vice versa. The group composition will stay the same for

the whole experiment.

In each series, you will be asked to order between 1 and 11 tokens. All participants in your group

will make their orders at the same time. You payoff from each series will depend on two things: (1) the

current payoff level for your group, and (2) the number of tokens you order. The higher is the group

payoff level for the series, the higher are your payoffs in this series. All members of your group have

the same group payoff level in this series.

Given a group payoff level, the relationship between the number of tokens you order and your payoff

may look something like this:

PAYOFF SCHEDULE IN THIS SERIES; GROUP PAYOFF LEVEL: 1394

Your token order 1 2 3 4 5 6 7 8 9 10 11
Payoff in this series 1 287 521 703 833 911 937 911 833 703 521

For example, the table above indicates that the group payoff level in this series is 1394. At this

level, if you choose to order 5 tokens, then your payoff will be 833 experimental dollars.

The group payoff level for the first series will be given to you by the computer. The payoff level for your

group in the next series will depend on your group’s total token order in this series. Your group payoff

1



level in the next series may increase if the number of tokens ordered by the group in this series is low;

Your group payoff level in the next series may decrease if the number of tokens ordered by the group

in this series is high; For some group token order, your group payoff level in the next series may be the

same as in this series.

Example 1 To illustrate how your payoff schedule may change from series to series, depending

on your group orders, consider the attachment called “Example 1 Scenarios”. Suppose, as in this

attachment, that your group has a payoff level of 1394 in the current series. The table and figure A1

illustrate how the payoffs change from series to series if your group orders the sum of 3 tokens in each

series. The table shows the group payoff level will increase from 1394 in this series to 1878 in the next

series, resulting in increased payoffs from token orders. For example, if you order 1 token, your payoff

will be 1 experimental dollar in this series, but in the next series your payoff from the same order will

increase to 485 experimental dollars. The table also shows that if the group order is again 3 tokens in

the next series, the group payoff level will further increase in the series after next. Similarly, the table

demonstrates the payoff changes in the future series up to three series ahead. The graph illustrates.

When making token orders, you will be given a calculator which will help you estimate the effect

of your and the other participants’ token choices on the payoff levels in the future series. In fact, you

will have to use this calculator before you can order your tokens.

TRY THE CALCULATOR ON YOUR DECISION SCREEN NOW. In the calculator box,

enter ”1” for your token order, and ”2” for the sum of the other participants’ orders. (The group tokens

will be then equal to 3.) The ”Calculator Outcome” box will show the changes in the payoff levels and

the actual payoffs from the current series to the next and up to four series ahead, if these token orders

are chosen in every series. Notice how the payoff levels and the actual payoffs increase from series to

series.

Consider now the table and figure A4. They illustrate how group payoff levels change from series

to series if your group orders the total of 30 tokens in each series. Suppose, for example, that you order

11 tokens in this series. The table shows that, given the current payoff level, your payoff will be 521

experimental dollar in this series, but in the next series your payoff from the same order will be -446

experimental dollars. (This is because the group payoff level will decrease from 1394 in this series to

427 in the next series.) Again, the table and the graph illustrate how the payoffs change in the future

series up to three series ahead, assuming that the total group order stays at 30 tokens in each series.

TRY THE CALCULATOR WITH THE NEW NUMBERS NOW. In the calculator box, enter

”11” for your token order, and ”19” for the sum of the other participants’ orders. (The group tokens

will be then equal to 30.) The ”Calculator Outcome” box will again show the changes in the payoff

levels and the actual payoffs from the current series to the next and up to four series ahead, given the

new token orders. Notice how the payoff levels and the actual payoffs decrease from series to series.
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Now try the calculator with some other numbers.

After you practice with the calculator, ENTER A TOKEN ORDER IN THE DECISION BOX.

The decision box is located on your decision screen below the calculator box.

Predictions Along with making your token order, you will be also asked to predict the sum of

token orders by other participants in your group. You will get an extra 50 experimental dollars for

an accurate prediction. Your payoff from prediction will decrease with the difference between your

prediction and the actual tokens ordered by others in your group. The table below explains how you

payoff from prediction depends on how accurate your prediction is.

PAYOFF FROM PREDICTIONS

Difference between predicted and
actual sum of others’ tokens 0 2 4 6 8 10 12 14 16 18 20

Your Payoff from Prediction 50 50 48 46 42 38 32 26 18 10 0

PLEASE ENTER A PREDICTION INTO THE DECISION BOX NOW.

Results After all participants make their token orders and predictions, the computer will display the

“Results” screen, which will inform you about your token order, the sum of the other participants’

tokens, and your total payoff in this series. Your total payoff equals the sum of your payoff from token

order and your payoff from prediction. The results screen will also inform you about the change in the

payoff levels from this series to the next series, and display the corresponding payoff schedules.

Trials In each series, you will be given three independent decision trials to make your token orders

and predictions. The payoff levels for your group will stay the same across the trials of a given series.

At the end of the series, the computer will randomly choose one of these three trials as a paid trial.

This paid trial will determine your earnings for this series, and the payoff level for your group in the

next series. All other trials will be unpaid. At the end of the series, the series results screen will inform

you which trial is chosen as the paid trial for this series.

Advice for the next series At the end of each decision series, after the participants are informed

about the results in this series, each participant in your group will be asked to send an advice message

to other participants in the group, suggesting number of tokens to be chosen by each participant if their

decisions were to continue. This will conclude a given series.

PLEASE ENTER AN ADVICE (A SUGGESTED NUMBER OF TOKENS AND A VER-

BAL ADVICE) NOW.
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Continuation to the next decision series Upon conclusion of each series, we will roll an eight-

sided die to determine whether the experiment ends or continues to the next series. If the die comes

up with a number between 1 and 6, then the experiment continues to the next series. If the die shows

number 7 or 8, then the experiment stops. Thus, there are THREE CHANCES OUT OF FOUR that

the experiment continues to the next series, and ONE CHANCE OUT OF FOUR that the experiments

stops.

If the experiment continues, each new series that follows will be identical to the previous one except

for the possible group payoff level change that was explained above. You will be given the new payoff

table at the beginning of the new series.

Practice Before making decisions in the paid series, all participants will go through 5-series practice,

with each practice series consisting of one trial only. You will receive a flat payment of 10 dollars for

the practice.

Total payoff Your total payoff in this experiment will consist of two parts: (1) The flat payment for

the practice; plus (2) the payoff for the LAST series, i.e., the series after which your experiment ends.

If you have a question, please raise your hand and I will come by to answer your question.

ARE THERE ANY QUESTIONS?

Frequently asked questions

• What is the difference between a trial and a series?

Each series consists of three decision trials. One of the decision trials is then randomly chosen

by the computer to determine your payoffs in this series.

• What does my payoff in this series depend upon?

It depends upon your GROUP PAYOFF LEVEL in this series, and YOUR TOKEN ORDER.

• What is the group payoff level?

It is a positive number that is related to the payoffs you can get from token orders in the series.

The higher is the group payoff level, the higher is the payoff you get from any token order.

• Does my payoff in a series depend upon other participants’ token orders in this series?

No. Given your group payoff level in a series, your payoff in this series is determined only by

your own tokens order.
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• Why do the total group tokens matter?

Because THEY AFFECT THE PAYOFF LEVEL IN THE NEXT SERIES for your group. The

higher is the group tokens in this series, the lower will be the payoffs in the next series.

• How many series are there in this experiment?

The number of series will be determined by a random draw. There will be 3 OUT OF 4 CHANCES

that each series will continue to the next series, and 1 OUT OF 4 CHANCE that the experiment

will stop after this series. We will roll a die to determine the outcome.
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Example 1 Scenarios

A1. Payoff with Group Tokens = 3 in each series

Your Tokens Payoff Level 1 2 3 4 5 6 7 8 9 10 11
Payoff in this series 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff  in the next series 1878 485 771 1,005 1,187 1,317 1,395 1,421 1,395 1,317 1,187 1,005
Payoff in two series ahead 2023 630 916 1,150 1,332 1,462 1,540 1,566 1,540 1,462 1,332 1,150
Payoff in three series ahead 2066 673 959 1,193 1,375 1,505 1,583 1,609 1,583 1,505 1,375 1,193
Payoff in four series ahead 2079 686 972 1,206 1,388 1,518 1,596 1,622 1,596 1,518 1,388 1,206

A2. Payoff with Group Tokens = 12 in each series

Your Tokens Payoff Level 1 2 3 4 5 6 7 8 9 10 11
Payoff in this series 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff  in the next series 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff in two series ahead 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff in three series ahead 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff in four series ahead 1394 1 287 521 703 833 911 937 911 833 703 521

Payoff with Group Tokens = 3
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Example 1 Scenarios

A3. Payoff with Group Tokens = 21 in each series

Your Tokens Payoff Level 1 2 3 4 5 6 7 8 9 10 11
Payoff in this series 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff  in the next series 910 -483 -197 37 219 349 427 453 427 349 219 37
Payoff in two series ahead 765 -628 -342 -108 74 204 282 308 282 204 74 -108
Payoff in three series ahead 722 -671 -385 -151 31 161 239 265 239 161 31 -151
Payoff in four series ahead 709 -684 -398 -164 18 148 226 252 226 148 18 -164

A4. Payoff with Group Tokens = 30 in each series

Your Tokens Payoff Level 1 2 3 4 5 6 7 8 9 10 11
Payoff in this series 1394 1 287 521 703 833 911 937 911 833 703 521
Payoff  in the next series 427 -966 -680 -446 -264 -134 -56 -30 -56 -134 -264 -446
Payoff in two series ahead 137 -1,256 -970 -736 -554 -424 -346 -320 -346 -424 -554 -736
Payoff in three series ahead 50 -1,343 -1,057 -823 -641 -511 -433 -407 -433 -511 -641 -823
Payoff in four series ahead 23 -1,370 -1,084 -850 -668 -538 -460 -434 -460 -538 -668 -850

Payoff with Group Tokens = 30

-1,400

-1,000

-600

-200

200

600

1,000

1,400

1 2 3 4 5 6 7 8 9 10 11

Tokens
Payoff in this series Payoff  in the next series
Payoff in two series ahead Payoff in three series ahead
Payoff in four series ahead

Payoff with Group Tokens = 21

-1,400

-1,000

-600

-200

200

600

1,000

1,400

1 2 3 4 5 6 7 8 9 10 11

Tokens
Payoff in this series Payoff  in the next series
Payoff in two series ahead Payoff in three series ahead
Payoff in four series ahead



Post‐Experiment Questionnaire 

What do you think is the best number of tokens to order and why?
How did you make your decision to order?
How many tokens would you order if you are to participate again in this experiment?
How easy to understand were the instructions?
Was the main screen well organized?
Did you find yourself getting bored by the end?
Are you still glad you came (knowing that you are about to get paid)?
How many economics courses have you taken so far?
What is your major?
Please add any additional comments below 




