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Abstract

We evaluate the short term forecasting performance of methods that systematically
incorporate high frequency information via covariates. Our study provides a thorough
introduction of these methods. We highlight the distinguishing features and limita-
tions of each tool and evaluate their forecasting performance in two tourism-specific
applications. The first uses monthly indicators to predict quarterly tourist arrivals to
Hawaii; the second predicts quarterly labor income in the accommodations and food
services sector. Our results indicate that compared to the exclusive use of low fre-
quency aggregates, including timely intra-period data in the forecasting process results
in significant gains in predictive accuracy. Anticipating growing popularity of these
techniques among empirical analysts, we present practical implementation guidelines
to facilitate their adoption.
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1 Introduction

The importance of tourism across the world has led to an extensive literature which seeks to
predict visitor volumes. In places where tourism is a key component of the local economy,
a variety of organizations rely on predictions of tourism activity to plan their operations.
Because many tourism services are perishable, firms have an incentive to use forecasts of
tourism demand to e�ciently manage supply and prices. Tourism agencies use forecasts to
manage promotional strategies and set performance targets; other governmental organiza-
tions incorporate tourism forecasts into larger macroeconomic models. A wide variety of
indicators can be used to predict tourism activity, but each indicator may be sampled at a
di↵erent frequency and may only be available after a publication lag. In practice this issue
is often solved by transforming the data to a single frequency. But the aggregation process
eliminates valuable intra-period information that could be used to update the forecast. Such
practical issues arising in the forecasting process lead to two questions: (1) how can data
released with di↵erent lags and frequencies be combined in the generation of multi-period
forecasts, and (2) what benefits can be derived from such combinations.

There exists a wide range of methods used to forecast tourism demand, but the method
that o↵ers the best forecasting performance varies by application. In two meta-studies, Li
et al. (2005) and Song and Li (2008) review 22 and 55 published articles, respectively, that
compare alternative forecasting methods in tourism applications. Both studies conclude that
no single method dominates all others. The most popular methods used to forecast tourism
demand can be classified into two groups: univariate time series methods and multivariate
regressions. Univariate methods, like Exponential Smoothing (ES) and Autoregressive In-
tegrated Moving Average (ARIMA) models, use only the history of the variable of interest
for prediction. In contrast econometric methods, like Autoregressive Distributed Lag (ADL)
and Error Correction (EC) models, incorporate information from a set of explanatory vari-
ables. We provide a brief outline of several of these methods and their use in the tourism
literature in Section 2. Although several non-regression approaches, many using Artificial
Intelligence models, have appeared in the tourism forecasting literature in recent years, these
methods are beyond the scope of this study (for more information on these methods see Kon
and Turner (2005)).

A common feature of both univariate and multivariate models is that they operate at a
single frequency, with the variable of interest and any explanatory variables aggregated to
the same frequency before estimation. Consider predicting quarterly tourist arrivals using
the monthly number of inbound airline passengers as an explanatory variable. If passenger
counts are highly correlated with tourist arrivals, then the monthly passenger counts may
contain substantial predictive power. For example, if the forecaster observes that passenger
counts were much higher than expected after the first month of the quarter, she may want
to incorporate this information to update the tourist arrivals forecast for the quarter. How-
ever with a single frequency model the passenger count series must be aggregated to the
quarterly frequency, and the intra-quarter information cannot be used for prediction. Some
forecasters make ad-hoc adjustments to their short term forecasts to incorporate informa-
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tion from incomplete periods at the end of sample. But this process can be cumbersome
and, by definition, subjective. Using a model-based approach to incorporate high frequency
information streamlines the forecasting process and may improve forecasting accuracy.

Several approaches have been recently developed to directly use high frequency regressors
to predict a low frequency variable of interest. This is a rapidly growing area of research with
over 50 studies in the last decade (see for example Camacho et al., 2013). The simple example
above could be formulated as an Unrestricted Mixed Data Sampling (U-MIDAS) model
developed by Foroni et al. (2015). U-MIDAS uses high frequency regressors to predict a low
frequency variable, so that monthly passenger counts can be directly used to predict quarterly
tourist arrivals without any aggregation. Consequently, all of the monthly information can
be used as soon as it is available. However the U-MIDAS method results in a parameter
proliferation problem when there is a large frequency mismatch between the variable of
interest and the high frequency regressors. The Mixed Data Sampling (MIDAS) method of
Ghysels et al. (2004, 2007) solves this problem by imposing non-linear restrictions on the
model, but it sacrifices the simplicity of ordinary least squares parameter estimation. Foroni
et al. (2015) show that when the frequency mismatch is small, as in the case of using monthly
data to predict a quarterly series, U-MIDAS models tend to outperform MIDAS models.

Despite their appeal, few tourism studies have applied mixed frequency forecasting meth-
ods. In fact, we are aware of only one study; Bangwayo-Skeete and Skeete (2015) use a MI-
DAS model to predict monthly tourist arrivals to several Caribbean destinations with weekly
Google search data as an explanatory variable. They find that the mixed frequency model
outperforms several univariate methods. We use monthly tourist arrivals and other explana-
tory variables to obtain a forecast of quarterly tourist arrivals and find similar results. In
contrast, mixed frequency forecasting methods have been used extensively in macroeconomic
applications. The survey by Camacho et al. (2013) investigating a variety of short-term fore-
casting methods, and the study by Jansen et al. (2012) evaluating eleven di↵erent models
to forecast real GDP for several European countries find that incorporating high frequency
information improves predictive accuracy for the current period (nowcasting), but gains in
forecasting one or two periods ahead appear to be muted. Finally, some studies find that the
use of high frequency covariates does not significantly improve predictive accuracy. Baumeis-
ter et al. (2015) note that forecast precision depends on whether the high frequency data
provides a useful signal or simply introduces additional noise.

Factor models based on the Kalman filter have also been used for prediction in mixed-
frequency environments (see for example Fuleky and Bonham, 2015). Factor models are
beyond the scope of our study because their main purpose is the estimation of an unobserved
overall business cycle variable and its fluctuations (Stock and Watson, 1989, 1991). While,
Bai et al. (2013) found that factor models and the MIDAS models analyzed in our paper
have similar forecasting performances, the implementation of the former is more complex.

In the rest of the paper, we first discuss several classical and modern forecasting methods
used in the tourism literature and highlight their practical advantages and disadvantages.
We then evaluate their performance in a mixed frequency environment. Specifically, we use
monthly regressors to produce nowcasts and one-quarter-ahead forecasts of tourist arrivals,
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and, in a separate exercise, we predict quarterly earnings in the accommodation and food
services industry.1 Our results are largely in line with the existing literature. We find that,
relative to a low frequency baseline model, incorporating high frequency information results
in an overall improvement in predictive accuracy, both for nowcasting and one-period ahead
forecasting. However, di↵erences in accuracy across mixed frequency models tend to be
small. Therefore, while practitioners should use high frequency information, they should
use the method that can be applied to the particular problem at the least cost. Our results
also indicate that gains in predictive accuracy are the greatest when the high frequency
information is contemporaneous. Consequently, mixed-frequency methods are most valuable
when the high frequency regressors are available with relatively short publication lags.

2 Methods

Tourism forecasters often turn to classical methods to predict industry performance (see for
example Athanasopoulos et al., 2010; Dwyer et al., 2012). The most popular of these meth-
ods include autoregressive integrated moving average (ARIMA), autoregressive distributed
lag (ADL), error correction (ECM), and vector autoregression (VAR) models and their vari-
ants. Of the 121 tourism demand modeling and forecasting studies identified by Song and
Li (2008) over 2001-2006, nearly 60% used univariate time series techniques. These are the
least costly to implement in terms of data requirements and computational complexity be-
cause they only use the history of the variable of interest for prediction. More sophisticated
econometric methods incorporate information from a set of explanatory variables. Multi-
variate regressions have greater data requirements and can be more technically challenging
to implement, but they allow researchers to identify which components drive fluctuations in
tourism demand, and the included predictors may improve tourism demand forecasts.

The empirical literature does not provide clear evidence about the superiority of one of
these approaches over the other. A number of studies have found that multivariate regres-
sions outperform univariate time-series approaches in tourism forecasting applications. Song
et al. (2000) find that an EC model outperforms ARIMA and random-walk models, and Li
et al. (2006) combine an Error Correction and Time Varying Parameter (TVP-EC) model
and find that it outperforms TVP, EC, and several univariate methods. However, some
studies find that univariate methods outperform multivariate models. Kulendran and Witt
(2001) and Kulendran and Witt (2003) find that ARIMA models outperform random walk
and EC models for one-quarter-ahead forecasts but for longer horizons the ARIMA mod-
els are dominated by simple random walk models. Athanasopoulos et al. (2010) find that
univariate approaches outperform methods that include explanatory variables; they suggest
that these results may be due to model misspecification and the possibility that forecasting
the dependent variable directly may be easier than forecasting the explanatory variables. In
contrast, we find clear evidence that multivariate methods incorporating timely intra-period
data improve forecasting performance relative to a baseline univariate model.

1All data and R programs used are available on request.
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Many of the aforementioned methods are special cases of the general ADL model (see
Banerjee et al., 1993). The ADL model takes advantage of contemporaneous and lagged
observations of the variable of interest and its predictors. A typical ADL model can be
written as
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j, have lengths p and q whose optimal values can be determined using
standard model selection criteria. Additional regressors can be included at the cost of fur-
ther notational complexity. Univariate time series approaches only consider lags of tourist
arrivals and neglect the information in the associated passenger count variable, while contem-
poraneous multiple regressions ignore any dynamics. An ADL model nests both approaches
and is therefore a more general and versatile tool for forecasting.

A forecast produced on forecast date T for a horizon h is based on the estimated re-
lationship between y
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and the h

th-and-greater lags of x
t

in equation (1). Reporting delays
can result in missing observations for recent periods in a vintage T dataset, a phenomenon
sometimes called a “ragged edge.” This problem can be addressed by allowing for a lag
between time T and the most recent published observation. We denote this lag by �
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for the predictor variables and obtain a forecast for horizon h

ŷ

T+h

= ↵̂ + �̂(L)y
T��

y

+ �̂(L)x
T��

x

, (2)

with coe�cients previously estimated in a regression that maintains equivalent lags of arrivals
and passenger counts relative to the response variable, y

t

,
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Note, the time subscript denotes the reference period for a particular observation and not the
release date. To illustrate, consider the case where quarterly tourist arrivals are released with
a one quarter lag, �

y

= 1, but quarterly airline passenger counts are released immediately
at the end of the quarter, �

x

= 0. So at the end of the second quarter of the year, tourist
arrivals will only be available through the first quarter, but the passenger count series will
be available through the end of the second quarter. To estimate an equation for a one-period
ahead forecast, h = 1, equation (2) will estimate the relationship between tourist arrivals,
y

t

, and lagged arrivals beginning with y

t�2 and passenger counts beginning with x

t�1.
ADL models can be extended to map high frequency information into forecasts of low

frequency variables. In the following we describe forecasting models that combine data
sampled at di↵erent frequencies.
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2.1 Mixed Frequency Models

Mixed frequency models are typically used when the variable of interest evolves at a low
frequency while the predictors are observed at a high frequency. To illustrate, consider
the previous example of tourist arrivals and airline passenger counts but now with arrivals
sampled quarterly and passenger counts sampled monthly.2

The time index t refers to the end of a particular period. Without loss of generality (see
Fuleky, 2012), we set the unit of time to a quarter, so that it matches the frequency of tourist
arrivals, the response variable. Consequently, the monthly passenger count observations are
indexed with t = 1

3 ,
2
3 , 1, 1

1
3 , . . ., and the quarterly tourist arrivals with t = 1, 2, . . ..3 The

relationship between quarterly tourist arrivals, its own lags, and the lags of monthly passenger
counts can be estimated using a simple mixed frequency regression
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y

and �
x

are the release lags for
arrivals and passenger counts, respectively. The time increment of unit length indicates that
the rows of the data set are a quarter, or three months, apart. Equation (4) illustrates that
the tourist arrivals variable can be directly related to its own lags and the lags of monthly
passenger counts without any aggregation beforehand. This is an advantage relative to the
single frequency ADL, given by equation (1), where monthly passenger counts need to be
aggregated to the quarterly frequency before estimation and prediction.

The forecast date T can fall at the end of any month. Hence, tourist arrival forecasts
can be produced for horizons h = {0, 13 ,

2
3 , 1, 1

1
3 , . . .}, where the first three specify predictions

for the current quarter and are usually called “nowcasts”. For example, a forecast of first
quarter arrivals made at the end of January has a forecast horizon h = 2

3 . At the end of
February the first quarter forecast can be updated, and the updated forecast has a horizon
h = 1

3 . A forecast of tourist arrivals at horizon h requires an estimated relationship between
tourist arrivals and passenger counts with lags h + �

x

and greater in equation (4). Using
the coe�cients estimated in such a regression and the data available at the forecast date T ,
we obtain a forecast, ŷ

T+h

, by evaluating
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where �
y

and �
x

denote lags between the forecast period, T , and the most recent quarterly
and monthly observation, respectively. For example, if the target variable y is published at
the end of the last month of each quarter, and the forecast date is the end of the first month

2While this example uses high frequency (monthly) predictors to forecast a quarterly variable of interest,
the methods described could use higher frequency predictors such as weekly or even daily data. For example,
daily data on snowfall might be very useful when nowcasting monthly tourist arrivals or revenue in a region
dominated by winter sports tourism.

3The fractional lag operator, L1/3, is only applied to monthly indicators. For example, while x2 is the
value of the monthly indicator in the last month of quarter 2, L1/3

x2 = x1 2
3
and L

2/3
x2 = x1 1

3
are the values

of x in the second and first months of quarter 2, respectively.
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of the quarter, then �
y

= 1
3 . The most recent quarterly observation available at the end of

the first month of the quarter is the previous quarter’s value, y
T� 1

3
. Similarly, for a forecast

date at the end of the second month, �
y

= 2
3 , and a forecast date at the end of the third

month of the quarter implies �
y

= 0 as the current quarter value has just been released.
Foroni et al. (2015) called the model described above an unrestricted mixed data sam-

pling (U-MIDAS) regression. Because the lag-structure of equation (4) is unconstrained,
it potentially requires the estimation of a large number of parameters. To avoid parame-
ter proliferation, we consider various constraints on the lag-polynomials �(L) and �(L1/3).
Specifically, we examine the performance of mixed frequency models under the following
restrictions:

Autometrics-based model selection relies on the automatic model selection features of
the OxMetrics software (see Hendry and Krolzig, 2004) to identify an optimal set of
predictors and their lags. Autometrics uses a wide variety of diagnostic tools to simplify
a general unconstrained model.4

Non-overlapping predictors are obtained by separating highly correlated regressors with
similar information content based on their availability at time T . The regressor with
the most recent observation is incorporated with lags up until the period for which an
observation for another regressor is available. This second regressor is incorporated
into the model with lags up until the period for which an observation for yet another
regressor is available, and so on. Such lag structure implied by data availability is more
parsimonious than using all series in parallel. Refer to Section 3.1.1 for an illustration.

MIDAS of Ghysels et al. (2007) eliminates parameter proliferation by defining �(L1/3)
as an exponential Almon lag polynomial

�(L1/3
, ✓) = �0(✓)L

0/3 + �1(✓)L
1/3 + . . .+ �

q

(✓)Lq/3
, (6)

where

�

j

(✓) =
e

✓1j+✓2j
2

P
q

j=0 e
✓1j+✓2j

2 (7)

so that the estimated values of only two hyper-parameters, ✓1 and ✓2, determine the
distribution of weights along the lag polynomial. Because the hyper-parameters enter
the model nonlinearly, they can not be estimated by ordinary least squares, and we
have to rely on other nonlinear estimation techniques.

4The Autometrics model selection algorithm begins from a General Unrestricted Model (GUM) and se-
quentially discards variables that are statistically insignificant, subject to the restriction that the reduced
model continues to pass a number of specification tests such as tests of serially uncorrelated and homoscedas-
tic errors. The goal is to obtain a specific model that is parsimonious, excludes only irrelevant variables and
lags, and is an adequate representation of the data.
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2.2 Forecasting Methods Based on Aggregates

The various flavors of mixed frequency models described above take into account high fre-
quency information contained in the explanatory variables. In contrast, conventional single
frequency models tend to lack the flexibility to e�ciently incorporate such information. We
can gauge the impact of high frequency information on forecast precision by comparing the
two types of models. The simplest way to generate a quarterly forecast is to use an au-
toregressive model with the quarterly data. Autoregressive models are typically used as
benchmarks in the ranking of various forecasting methods (for a list of papers see Song and
Li (2008) and Li et al. (2005)). A disadvantage of the quarterly AR model is its neglect of
both explanatory variables and monthly information available within a quarter.

A partial solution to the limitations of a quarterly AR model is a↵orded by a bridge,
consisting of two steps (see also Schumacher, 2014). In the first step, an autoregressive
model is used to iteratively forecast the values of the monthly explanatory variables for the
remainder of the current quarter and then the monthly forecasts are appended to the available
history and aggregated to the quarterly frequency. In the second step, a quarterly model
similar to the single frequency ADL is estimated from historical data, and then evaluated
using the projected quarterly values.

If, in addition to the predictors, the variable of interest is also available at the monthly fre-
quency, then predictions for the current quarter and beyond can be generated using monthly
AR and ADL models. In particular, single frequency AR and ADL models can be applied
to monthly data, and subsequently the monthly forecasts can be aggregated to the quarterly
frequency. In our empirical illustration, we will compare the forecasting performance of all
methods described above that are feasible.

3 Empirical Examples

Our goal is to demonstrate the impact of high frequency information on the accuracy of
nowcasts and one-quarter-ahead forecasts. We accomplish this by comparing the mixed and
single frequency models described in Section 2 in two separate forecasting exercises. We also
address two empirical issues associated with data availability at any time t: the ragged edge
problem (unbalanced data set) and regressions with real time data (vintages).

3.1 Data

Our first application illustrates how to obtain forecasts of quarterly tourist arrivals to the
state of Hawaii using monthly tourist arrivals, monthly passenger counts, and monthly airline
passenger seats outlook. Although historical monthly values of tourist arrivals are available,
a quarterly prediction, or three-month forecast is useful for evaluating industry performance
against a quarterly target or as inputs into planning, tax, and forecasting models of the
macroeconomy.
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Our second application illustrates how to obtain forecasts of quarterly earnings for the
accommodation and food services industry for the state of Hawaii using the monthly con-
sumer price index, monthly accommodation and food services jobs, and monthly tourist days.
Quarterly earnings for the accommodation and food services industry, like tourist arrivals, is
a useful indicator on its own, but also an important component of quarterly macroeconomic
models for Hawaii given that the accommodations and food services industry accounts for
more than 8% of Hawaii’s state GDP.

3.1.1 Application 1 - Prediction of Quarterly Tourist Arrivals

In our application tourists are defined as persons on arriving airline flights excluding in-
transit travelers and returning residents. The Hawaii Tourism Authority (HTA) estimates the
number of in-transit travelers and residents by surveying passengers on domestic flights and
analyzing US Customs Declarations Forms from international flights. HTA then calculates
tourist arrivals by subtracting non-tourists from the total passenger counts reported by
airlines. Monthly tourist arrivals estimates are released with a one month lag: the tourist
arrival statistics for January are released at the end of February. Quarterly tourist arrivals
are the sum of the monthly values within a quarter.

We obtained airline passenger counts from the Hawaii Department of Business, Economic
Development, and Tourism (DBEDT). The monthly value of this indicator, available with
a two-day lag, captures the total number of airline passengers within a month. It includes
passengers that arrive on both international and domestic flights with the exception of flights
originating in Canada. Since this indicator is available almost contemporaneously, we include
it in our model to inform us about current changes in traveler volumes.

The airline seats outlook captures the total number of scheduled seats expected to be
flown on future direct flights to Hawaii excluding charter flights. This indicator is prepared
by HTA based on data from Diio Mi flight schedules. Each release includes a three month
outlook, so the release at the end of January includes an outlook for February, March and
April. The next release at the end of February will include an outlook for March, April, and
May, and so on. The number of airline seats actually flown is published with a one month
lag together with tourist arrivals. We combine the two seats indicators into a single series
by using all available historical values of seats flown and appending the latest seats outlook
to the end of the series. Due to its forward looking nature, the seats outlook is subject to
greater uncertainty than historical data. It tends to undergo significant revisions from one
release to the next, especially during rapid changes in airlift. For example, the outlook for
March seats outlook published in the February release may be substantially di↵erent from
the March seats outlook published in the January release.

Figure 1 illustrates the increasing amount of information available as the forecast date T
progresses through a quarter. At the end of January, we have tourist arrivals for December
and consequently for the fourth quarter of the previous year, passenger counts for January,
and seats outlook through April. The forecast horizons for first and second quarter tourist
arrivals are h = 2

3 and h = 12
3 , respectively. To illustrate, the construction of the non-
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Figure 1: Increase of the information set and change of forecast horizon as the forecast date T progresses
through a quarter in Application 1. � denotes the “release lag” of quarterly tourist arrivals.

overlapping model, first consider the nowcast at horizon h = 2
3 ; it is based on four lags of

quarterly tourist arrivals in the previous year, passenger counts for January, and seats outlook
for February and March. For the h = 12

3 forecast horizon, in addition to the information
used for the nowcast the non-overlapping model uses the seats outlook for April.

At the end of February, we have tourist arrivals for January, passenger counts for Febru-
ary, and seats outlook through May. The forecast horizons for first and second quarter
tourist arrivals are h = 1

3 and h = 11
3 , respectively. For the nowcast at horizon h = 1

3 ,
the non-overlapping model uses four lags of quarterly tourist arrivals in the previous year,
tourist arrivals for January, passenger counts for February, and seats outlook for March. For
the h = 11

3 forecast horizon, the non-overlapping model uses the nowcast information set
plus the seats outlook for April and May.
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At the end of March, we have tourist arrivals for February, passenger counts for March,
and seats outlook through June. The forecast horizons for first and second quarter tourist
arrivals are h = 0 and h = 1, respectively. For the nowcast at horizon h = 0, the non-
overlapping model uses four lags of quarterly tourist arrivals in the previous year, tourist
arrivals for January and February, and passenger counts for March. For the h = 1 forecast
horizon, the non-overlapping model also uses seats outlook for April, May, and June in
addition to the information used for the nowcast. By the end of April the information set
has shifted forward by a full quarter relative to January, and our focus turns to predictions
for the second and third quarter, or horizons h = 2

3 and h = 12
3 , respectively. The analysis

therefore covers forecast horizons between h = 0 and h = 12
3 , in

1
3 , or monthly, increments.

We construct a real time data set that contains each vintage of data. This means that
for all variables we collect unrevised historical values and subsequent revisions. The goal
of constructing a real time data set is to replicate the actual data that would have been
available to produce a forecast at a given time. This is especially important because of the
frequent and sizable revisions that the seats outlook series undergoes. To avoid issues related
to unit roots and seasonality, we convert levels to year-over-year growth rates.

Our sample starts in January of 2001, and we produce quasi out-of-sample forecasts
between January of 2008 and June of 2014. We estimate the model parameters from recursive
samples where the starting period is held fixed and the ending period advances with the
forecast date. The Autometrics based model, determined by diagnostic criteria, is respecified
in each iteration of the forecasting exercise. We set the maximum lag length to 4 for quarterly
tourist arrivals and to 12 for monthly tourist arrivals, passenger counts, and airline seats.
The MIDAS model also uses these lag limits.

3.1.2 Application 2 - Prediction of Quarterly Income

Industry earnings are defined as the labor income of employees and proprietors in a particular
industry. The US Bureau of Economic Analysis (BEA) produces estimates of industry
earnings based on a number of administrative data sources as well as surveys and census
data. We focus on labor income in the accommodation and food services industry, which—in
contrast to tourist arrivals—is not available at the monthly frequency. Estimates are released
quarterly with roughly a one quarter lag: earnings for the first quarter are released in June,
earnings for the second quarter are released in September, and so on.

We use several predictors of labor income. Figure 2 illustrates the increasing amount of
information available as the forecast date T progresses through a quarter. The accommo-
dation and food services industry in Hawaii is heavily influenced by tourism activity, which
can be captured by tourist days. Tourist days are defined as the total number of days spent
in the state by tourists who arrive by air. Tourist days are estimated by HTA from the same
surveys and administrative sources used to estimate tourist arrivals and are released with
the same one-month lag.

Payroll jobs for the accommodation and food services industry in Hawaii are estimated
jointly by the BLS and the Hawaii Department of Labor and Industrial Relations (DLIR)
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Figure 2: Increase of the information set and change of forecast horizon as the forecast date T progresses
through a quarter in Application 2. � denotes the release lag of quarterly labor income.

as part of the Current Employment Statistics program. Since the vast majority of industry
earnings consist of payments to employees, payroll jobs should provide useful information
on changes in earnings due to changes in the total number of jobs. Payroll jobs at the state
level are available with a half-month publication lag.

The headline Consumer Price Index for All Urban Consumers, CPI-U, is a US city average
for all items from the US Bureau of Labor Statistics (BLS). Industry earnings are only
released in nominal dollars so it follows that the CPI could have considerable predictive
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power for changes in earnings associated with changes in the overall price level. While there
is a consumer price index for Honolulu, HI, this index is only available semi-annually and
with a lengthy publication lag, limiting its usefulness for producing quarterly nowcasts. The
national CPI, in contrast, is available monthly, and similarly to payroll jobs with a short,
roughly two-week, publication lag.

Since the publication lag on industry earnings is almost a full quarter, industry earnings
for the previous quarter are not available during the first two months of each quarter. For
example, in January and February, the last observation available for earnings is the third
quarter of the previous year. Therefore, in addition to nowcasts for the current quarter and
forecasts for the subsequent quarter, in this application we also produce backcasts for the
previous quarter.

The format of the forecasting exercise largely follows the first application. They only
key di↵erence is that in this application our sample begins in January 1990. We produce
predictions for the period from January 2008 to June 2014. The data are transformed to
year-over-year di↵erences of log-levels, the maximum lag-length is set to four quarters and
twelve months, and we use recursive estimation, as in the first application.

3.2 Results

We evaluate the forecasting performance of all methods by comparing their Root Mean
Squared Errors (RMSE) and Mean Absolute Percent Errors (MAPE). Because MAPE is
based on a linear loss function, while RMSE is based on a quadratic loss function and will
place a greater weight on large forecast errors, our results vary depending on the accuracy
measure considered. While comparing forecasting methods using RMSE and MAPE is com-
mon in the tourism literature (Li et al., 2005; Song and Li, 2008); it is less common to see
tests of the hypothesis that one forecast is more accurate than another. We use a small
sample adjustment of the Diebold-Mariano Test (Diebold and Mariano, 1995; Harvey et al.,
1997) to formally test whether the observed di↵erences in forecast accuracy are statistically
significant. We use two versions of the test, one with a quadratic loss function that cor-
responds to RMSE and a second with a linear loss function that corresponds to MAPE;
the results from both tests are similar. An alternative to the modified DM test has been
proposed by Ashley (1998). We choose the modified DM test because it provides a simpler
and less computationally costly means of model comparison. We expect forecast accuracy to
improve as the horizon shrinks and more contemporaneous intra-period information is used
in our mixed frequency models.

3.2.1 Application 1 - Prediction of Quarterly Tourist Arrivals

For our first application, Table 1 and Figure 3 report the results based on RMSE, Table
2 and Figure 4 report the results based on MAPE, and Table 3 reports a summary of
the DM test results. For all models, forecast accuracy improves as the forecast horizon
shortens. For most of the models, the largest reduction in RMSE or MAPE occurs when the
forecast horizon shrinks from h = 1 to h = 2

3 as tourist arrivals for the full previous quarter
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Figure 3: RMSE for each model for forecast horizons between h = 1 2
3 and h = 0.

become available. In fact, the quarterly AR model benefits from new information only at
this horizon. In contrast, the mixed frequency models take advantage of monthly data,
and can be updated each month as new data becomes available resulting in a continuous
improvement in forecasting accuracy at each horizon.
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Figure 4: MAPE for each model for forecast horizons between h = 1 2
3 and h = 0.
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Table 1: Comparison of Forecasting Performance by RMSE for Application 1

Forecast Nowcast

Model h = 12
3 h = 11

3 h = 1 h = 2
3 h = 1

3 h = 0
Quarterly AR 161.3 161.3 161.3 100.7 100.7 100.7
Monthly AR 153.8 139.5 129.8 80.3 41.5 26.7
Monthly ADL 73.8 78.5 73.1 35.8 22.1 10.4
Bridge 115.6 111.7 111.5 43.1 30.4 27.1
Autometrics 107.1 100.4 82.0 41.3 26.4 13.2
Non-Overlapping 96.1 84.1 75.5 57.3 27.7 13.0
MIDAS 94.2 88.4 77.9 46.0 27.5 18.4

Note: Root mean squared error for each model and forecast horizon. Numbers in bold font represent
the lowest RMSE for a particular forecast horizon, h.

Table 2: Comparison of Forecasting Performance by MAPE for Application 1

Forecast Nowcast

Model h = 12
3 h = 11

3 h = 1 h = 2
3 h = 1

3 h = 0
Quarterly AR 4.71 4.71 4.71 2.95 2.95 2.95
Monthly AR 5.13 5.33 5.45 2.05 1.90 1.05
Monthly ADL 3.20 3.21 2.36 1.84 0.91 0.56
Bridge 3.77 3.53 3.35 2.14 1.54 1.33
Autometrics 4.27 3.87 2.87 1.46 0.94 0.63
Non-Overlapping 4.22 3.58 2.66 2.57 1.07 0.53
MIDAS 3.49 3.76 3.00 2.05 1.00 0.66

Note: Mean absolute percent error for each model and forecast horizon. Numbers in bold font
represent the lowest MAPE for a particular forecast horizon, h.

All models show clear improvement in predictive accuracy relative to the quarterly AR
model regardless of the method used to incorporate the high frequency information. Addi-
tionally the methods that incorporate explanatory variables produce more accurate forecasts
than both the monthly and quarterly AR models in almost all cases. The only exception
is h = 0 where the monthly AR model slightly outperforms the Bridge model. These two
results illustrate the value of multivariate methods and mixed frequency information. The
monthly AR model incorporates high frequency information about the dependent variable
and produces more accurate predictions relative to the quarterly AR model. But the mul-
tivariate methods go a step further by also using high frequency information contained in
a set of explanatory variables resulting in more accurate predictions than either univariate
model.
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Table 3: Statistical Comparison of Forecasting Performance for Application 1

Quadratic Linear

Model RMSE DM MAPE DM
Quarterly AR 0 0 3 0
Monthly AR 7 3 3 1
Monthly ADL 36 20 28 13
Bridge 13 5 10 1
Autometrics 23 12 17 6
Non-Overlapping 24 11 16 7
MIDAS 22 9 15 4

Note: Values for RMSE and MAPE indicate the total number of models dominated based on
RMSE and MAPE across the six forecast horizons. Values for DM indicate the number of models
statistically dominated at the 5% significance level based on a quadratic or linear loss function. In
both cases a higher value indicates a higher ranking and superior forecasting performance. See the
Appendix for full test results.

Among all the methods, the distributed lag model clearly performs the best based on
RMSE. At every forecast horizon, h, predictions from the distributed lag model have the
lowest RMSE. This may be due to the fact that quarterly predictions from distributed lag
models are aggregates of monthly values, which include available monthly observations. In
contrast, the mixed frequency models only use monthly variables as predictors of quarterly
tourist arrivals in a regression, but no aggregation of actual monthly observations takes place.
Although the use of published monthly values results in a slight advantage of the distributed
lag model, it is important to remember that this approach is only feasible if the variable
of interest is also available at the monthly frequency. Across the rest of the multivariate
models—essentially the mixed frequency ones—there is no clear ranking. For example, the
MIDAS model outperforms the Autometrics based model in all three forecasting periods,
whereas the Autometrics model outperforms MIDAS in all three nowcasting periods.

Comparing methods by MAPE, many of the same results hold. The monthly AR model
preforms relatively poorly for horizons h = 12

3 , 1
1
3 , 1. All other models continue to o↵er

substantial improvements in predictive accuracy over the quarterly AR model at all forecast
horizons. However the monthly ADL model no longer dominates at all forecast horizons.
The monthly ADL forecast has the lowest MAPE for four of the six horizons but for h = 2

3
the Autometrics based model delivers more accurate predictions and for h = 0 the Non-
Overlapping model forecasts are slightly more accurate.

The DM test results indicate that the mixed frequency methods deliver a statistically
significant improvement in forecasting precision over the quarterly AR model, but among
the mixed frequency models the di↵erences in forecasting performance are generally not
statistically significant. The full DM test results are included in the Appendix and Table
3 summarizes the test results across all six horizons. The monthly ADL model dominates
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all other methods based on RMSE point values but less than half of those di↵erences are
statistically significant. Among the other mixed frequency methods, di↵erences in accuracy
are generally not statistically significant. For a practitioner, these results highlight the
importance of incorporating high frequency information, but the method used to incorporate
the high frequency information is of second-order importance.

3.2.2 Application 2 - Prediction of Quarterly Income

Table 4 and Figure 5 report the results based on RMSE for our second application, Table
5 and Figure 6 report the results based on MAPE, and Table 6 reports a summary of
the DM test results. The results for this application are largely similar to those for the
first application. Again, RMSE declines as the forecast horizon, h, shrinks—increasing
the amount of useful information in the model results in a more accurate prediction. The
quarterly AR model ranks worst in terms of forecasting performance; all of the models
incorporating explanatory variables, at either the monthly or quarterly frequency, outperform
the quarterly AR model.

The mixed frequency methods tend to o↵er substantially more accurate forecasts than
the quarterly ADL late in the quarter, at horizons h = 1 and h = 0. At the end of the
quarter there are two months of high frequency data used in the mixed frequency model pre-
dictions, but these two months of data are unavailable in the quarterly ADL. In contrast, at
h = 12

3 ,�
1
3 ,�

2
3 the mixed frequency methods only provide at best a marginal improvement

over the quarterly ADL model; at these horizons all three months of high frequency data are
available for the previous quarter, so when forming predictions using the quarterly ADL the
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latest data on all regressors is available. This highlights the value of examining the availabil-
ity and relevance of high frequency predictors when considering the use of mixed frequency
forecasting methods. If the high frequency predictors contain useful information, then the
increased accuracy of mixed frequency methods may outweigh the complexity they introduce
to the forecasting process; otherwise, working at the low frequency may be preferable.

Unlike in the first application, there is no clear ranking among the mixed frequency
methods as no single model dominates at all horizons. The MIDAS model performs relatively
well, dominating at four horizons based on RMSE and five horizons based on MAPE. However
the other two mixed frequency methods also perform well; the Bridge model dominates at

Table 4: Comparison of Forecasting Performance by RMSE for Application 2

Forecast Nowcast Backcast

Model h = 12
3 h = 11

3 h = 1 h = 2
3 h = 1

3 h = 0 h = �1
3 h = �2

3
Quarterly AR 233.4 233.4 169.5 169.5 169.5 114.4 114.4 114.4
Quarterly ADL 179.4 179.4 170.3 121.7 121.7 114.9 67.8 67.8
Bridge 198.6 184.7 129.7 96.8 82.7 74.8 67.8 67.8
Autometrics 173.3 168.4 140.2 112.8 106.7 74.9 62.2 62.2
MIDAS 164.5 136.7 129.6 110.3 91.3 73.3 64.4 64.4

Note: Root mean squared error for each model and forecast horizon. Numbers in bold font represent
the lowest RMSE for a particular forecast horizon, h.
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Table 5: Comparison of Forecasting Performance by MAPE for Application 2

Forecast Nowcast Backcast

Model h = 12
3 h = 11

3 h = 1 h = 2
3 h = 1

3 h = 0 h = �1
3 h = �2

3
Quarterly AR 5.77 5.77 3.83 3.83 3.83 2.60 2.60 2.60
Quarterly ADL 3.98 3.98 3.84 2.84 2.84 2.73 1.51 1.51
Bridge 4.72 4.43 2.95 2.22 1.95 1.68 1.51 1.51
Autometrics 3.92 3.76 2.92 2.67 2.13 1.74 1.46 1.46
MIDAS 3.77 3.62 3.02 2.54 2.13 1.49 1.35 1.35

Note: Mean absolute percentage error for each model and forecast horizon. Numbers in bold font
represent the lowest MAPE for a particular forecast horizon, h.

two horizons based on RMSE and MAPE while the Autometrics based model dominates at
two horizons based on RMSE and one horizon based on MAPE.

A summary of our statistical comparison of forecast accuracy is included in Table 6
with the full results included in the Appendix. The DM tests indicate that di↵erences
in forecasting accuracy between the Quarterly AR model and the other four methods are
almost always statistically significant. However di↵erences between the Quarterly ADL
model and the mixed frequency methods are only statistically significant in a handful of cases.
Di↵erences between the mixed frequency methods are generally not statistically significant.

These results highlight the importance of multivariate methods when explanatory vari-
ables contain strong signals about the path of the target series. This is particularly true
when intra-period information becomes available in mixed-frequency models at h = 1

3 and
h = 0. However when there is no intra-period information, for example at h = 12

3 ,�
1
3 ,�

2
3 ,

Table 6: Statistical Comparison of Forecasting Performance for Application 2

Quadratic Linear

Model RMSE DM MAPE DM
Quarterly AR 0 0 1 0
Quarterly ADL 7 5 7 5
Bridge 16 8 17 8
Autometrics 8 8 19 9
MIDAS 24 10 23 13

Note: Values for RMSE and MAPE indicate the total number of models dominated based on
RMSE and MAPE across the eight forecast horizons. Values for DM indicate the number of models
statistically dominated at the 5% significance level based on a quadratic or linear loss function. In
both cases a higher value indicates a higher ranking and superior forecasting performance. See the
Appendix for full test results.
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then mixed frequency methods may o↵er little benefit over a low frequency ADL and add
complexity to the forecasting process. Finally, in contrast to the first application where
the monthly ADL model generally dominated, this application indicates no clear winner or
ranking among the mixed frequency methods. The most accurate mixed frequency method
will likely vary from one application to another so practitioners should test a number of
methods for their particular application and data availability. For some applications there
may be no single method that dominates; the best mixed frequency method may be the one
that can be incorporated into the forecasting process at least cost.

4 Conclusion

We contribute to the existing literature on tourism forecasting in several important ways.
First, we examine a number of econometric methods that incorporate high frequency infor-
mation in the forecasting process. These techniques are at the frontier of academic research
and are gaining widespread adoption in empirical macroeconomic analysis. Our study pro-
vides a thorough introduction of these methods. We highlight each method’s distinguishing
features and limitations that practitioners need to be aware of. Second, to facilitate their
adoption, we present practical guidelines for their implementation. Third, we illustrate the
merits of these techniques by evaluating their performance in forecasting Hawaii tourist
arrivals and labor income in the accommodations and food service industry.

Our study confirms the hypothesis that using high frequency data improves forecasting
performance. The main benefit of high frequency data is that it contains more timely infor-
mation than low frequency data released with a long publication lag. However, among the
models that incorporate high frequency information, the di↵erences tend to be small and of-
ten statistically insignificant. This implies that, while practitioners should take advantage of
high frequency data, the particular method used to do so is relatively unimportant. Incorpo-
rating high frequency data into the forecasting process through any of the methods outlined
is likely to result in a substantial improvement in accuracy, whereas moving from one method
to another leads to marginal gains at best. Therefore, the optimal model incorporating high
frequency information may be the one that is easiest to implement.
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5 Appendix

Table 7: Comparison of Forecasting Performance for Application 1: h = 1 2
3

Model QAR MAR MADL BR Auto N-O MIDAS
Quarterly AR 1 1.04 2.19⇤⇤ 1.38 1.51⇤ 1.68⇤ 1.71⇤

Monthly AR 0.96 1 2.1⇤ 1.33 1.45 1.62 1.65
Monthly ADL 0.46⇤⇤ 0.48⇤ 1 0.63⇤ 0.69⇤⇤ 0.77⇤ 0.78
Bridge 0.72 0.75 1.58⇤ 1 1.09 1.21 1.24
Autometrics 0.66⇤ 0.69 1.45⇤⇤ 0.92 1 1.11 1.14
Non-Overlapping 0.6⇤ 0.62 1.3⇤ 0.82 0.9 1 1.02
MIDAS 0.58⇤ 0.61 1.27 0.81 0.88 0.98 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 8: Comparison of Forecasting Performance for Application 1: h = 1 1
3

Model QAR MAR MADL BR Auto N-O MIDAS
Quarterly AR 1 1.17 2.05⇤ 1.44⇤ 1.6⇤ 1.91⇤ 1.82⇤

Monthly AR 0.86 1 1.76⇤ 1.24 1.37 1.64⇤ 1.56
Monthly ADL 0.49⇤ 0.57⇤ 1 0.7⇤ 0.78 0.93 0.89
Bridge 0.69⇤ 0.81 1.42⇤ 1 1.11 1.33 1.26
Autometrics 0.62⇤ 0.73 1.28 0.9 1 1.2 1.14
Non-Overlapping 0.52⇤ 0.61⇤ 1.07 0.75 0.84 1 0.95
MIDAS 0.55⇤ 0.64 1.13 0.79 0.88 1.05 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.
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Table 9: Comparison of Forecasting Performance for Application 1: h = 1

Model QAR MAR MADL BR Auto N-O MIDAS
Quarterly AR 1 1.24 2.21⇤⇤ 1.45⇤ 1.96⇤ 2.14⇤⇤ 2.07⇤⇤

Monthly AR 0.81 1 1.79⇤⇤ 1.17 1.59⇤ 1.73⇤⇤ 1.67⇤⇤

Monthly ADL 0.45⇤⇤ 0.56⇤⇤ 1 0.66⇤ 0.89 0.97 0.94
Bridge 0.69⇤ 0.85 1.52⇤ 1 1.35 1.47 1.42
Autometrics 0.51⇤ 0.63⇤ 1.13 0.74 1 1.09 1.05
Non-Overlapping 0.47⇤⇤ 0.58⇤⇤ 1.03 0.68 0.92 1 0.97
MIDAS 0.48⇤⇤ 0.6⇤⇤ 1.07 0.7 0.95 1.04 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 10: Comparison of Forecasting Performance for Application 1: h = 2
3

Model QAR MAR MADL BR Auto N-O MIDAS
Quarterly AR 1 1.23⇤ 2.81⇤ 2.24⇤ 2.46⇤ 1.76⇤ 2.18⇤

Monthly AR 0.81⇤ 1 2.29⇤ 1.82 2⇤ 1.44 1.78⇤

Monthly ADL 0.36⇤ 0.44⇤ 1 0.8 0.87 0.63⇤⇤ 0.78
Bridge 0.45⇤ 0.55 1.26 1 1.1 0.79 0.97
Autometrics 0.41⇤ 0.5⇤ 1.15 0.91 1 0.72⇤ 0.89
Non-Overlapping 0.57⇤ 0.7 1.6⇤⇤ 1.27 1.39⇤ 1 1.24
MIDAS 0.46⇤ 0.56⇤ 1.29 1.03 1.13 0.81 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.
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Table 11: Comparison of Forecasting Performance for Application 1: h = 1
3

Model QAR MAR MADL BR Auto N-O MIDAS
Quarterly AR 1 2.33⇤ 4.56⇤⇤ 3.27⇤ 3.8⇤⇤ 3.64⇤⇤ 3.66⇤⇤

Monthly AR 0.43⇤ 1 1.96⇤⇤ 1.4 1.63⇤⇤ 1.56⇤ 1.57⇤

Monthly ADL 0.22⇤⇤ 0.51⇤⇤ 1 0.72 0.83 0.8 0.8
Bridge 0.31⇤ 0.71 1.4 1 1.16 1.12 1.12
Autometrics 0.26⇤⇤ 0.61⇤⇤ 1.2 0.86 1 0.96 0.96
Non-Overlapping 0.27⇤⇤ 0.64⇤ 1.25 0.9 1.04 1 1
MIDAS 0.27⇤⇤ 0.64⇤ 1.25 0.89 1.04 1 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 12: Comparison of Forecasting Performance for Application 1: h = 0

Model QAR MAR MADL BR Auto N-O MIDAS
Quarterly AR 1 3.78⇤⇤ 9.62⇤⇤ 3.62⇤⇤ 7.67⇤⇤ 7.77⇤⇤ 5.45⇤⇤

Monthly AR 0.26⇤⇤ 1 2.54⇤⇤ 0.96 2.03⇤⇤ 2.05⇤⇤ 1.44
Monthly ADL 0.1⇤⇤ 0.39⇤⇤ 1 0.38⇤⇤ 0.8 0.81 0.57⇤

Bridge 0.28⇤⇤ 1.04 2.66⇤⇤ 1 2.12⇤⇤ 2.14⇤⇤ 1.51
Autometrics 0.13⇤⇤ 0.49⇤⇤ 1.25 0.47⇤⇤ 1 1.01 0.71
Non-Overlapping 0.13⇤⇤ 0.49⇤⇤ 1.24 0.47⇤⇤ 0.99 1 0.7
MIDAS 0.18⇤⇤ 0.69 1.76⇤ 0.66 1.41 1.42 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.
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Table 13: Comparison of Forecasting Performance for Application 2: h = 1 2
3

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1.3⇤⇤ 1.18 1.35⇤ 1.46⇤⇤

Quarterly ADL 0.77⇤⇤ 1 0.9 1.04 1.12
Bridge 0.85 1.11 1 1.15 1.24⇤⇤

Autometrics 0.74⇤ 0.97 0.87 1 1.08
MIDAS 0.69⇤⇤ 0.89 0.81⇤⇤ 0.93 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 14: Comparison of Forecasting Performance for Application 2: h = 1 1
3

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1.3⇤⇤ 1.26⇤ 1.39⇤ 1.57⇤⇤

Quarterly ADL 0.77⇤⇤ 1 0.97 1.07 1.21
Bridge 0.79⇤ 1.03 1 1.1 1.25⇤

Autometrics 0.72⇤ 0.94 0.91 1 1.14
MIDAS 0.64⇤⇤ 0.83 0.8⇤ 0.88 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 15: Comparison of Forecasting Performance for Application 2: h = 1

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1 1.31⇤ 1.21⇤ 1.32
Quarterly ADL 1 1 1.31 1.21 1.33
Bridge 0.77⇤ 0.76 1 0.92 1.01
Autometrics 0.83⇤ 0.82 1.08 1 1.09
MIDAS 0.76 0.75 0.99 0.91 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.
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Table 16: Comparison of Forecasting Performance for Application 2: h = 2
3

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1.39⇤ 1.75⇤ 1.5⇤ 1.49⇤

Quarterly ADL 0.72⇤ 1 1.26 1.08 1.07
Bridge 0.57⇤ 0.8 1 0.86 0.85
Autometrics 0.67⇤ 0.93 1.17 1 0.99
MIDAS 0.67⇤ 0.94 1.18 1.01 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 17: Comparison of Forecasting Performance for Application 2: h = 1
3

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1.39⇤ 2.05⇤ 1.59⇤ 1.8⇤⇤

Quarterly ADL 0.72⇤ 1 1.47⇤ 1.14 1.3⇤⇤

Bridge 0.49⇤ 0.68⇤ 1 0.78 0.88
Autometrics 0.63⇤ 0.88 1.29 1 1.14
MIDAS 0.55⇤⇤ 0.77⇤⇤ 1.14 0.88 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 18: Comparison of Forecasting Performance for Application 2: h = 0

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1 1.53⇤⇤ 1.53⇤⇤ 1.66⇤⇤

Quarterly ADL 1 1 1.54⇤⇤ 1.53⇤⇤ 1.67⇤⇤

Bridge 0.65⇤⇤ 0.65⇤⇤ 1 1 1.09
Autometrics 0.66⇤⇤ 0.65⇤⇤ 1 1 1.09
MIDAS 0.6⇤⇤ 0.6⇤⇤ 0.92 0.92 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

27



Table 19: Comparison of Forecasting Performance for Application 2: h = � 1
3

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1.69⇤⇤ 1.69⇤⇤ 1.84⇤⇤ 1.78⇤⇤

Quarterly ADL 0.59⇤⇤ 1 1 1.09 1.05
Bridge 0.59⇤⇤ 1 1 1.09 1.05
Autometrics 0.54⇤⇤ 0.92 0.92 1 0.97
MIDAS 0.56⇤⇤ 0.95 0.95 1.04 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.

Table 20: Comparison of Forecasting Performance for Application 2: h = � 2
3

Model QAR QADL BR Auto MIDAS
Quarterly AR 1 1.69⇤⇤ 1.69⇤⇤ 1.84⇤⇤ 1.78⇤⇤

Quarterly ADL 0.59⇤⇤ 1 1 1.09 1.05
Bridge 0.59⇤⇤ 1 1 1.09 1.05
Autometrics 0.54⇤⇤ 0.92 0.92 1 0.97
MIDAS 0.56⇤⇤ 0.95 0.95 1.04 1

Note: Values represent the ratio of RMSE of the row model relative to the column model. A value
less than one indicates that the row model has lower RMSE than the column model. Di↵erences in
forecast accuracy are tested with the DM test using a quadratic loss function: *Significant at 5%
level. **Significant at the 1% level.
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