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1 Introduction

Technical progress has lowered the cost of wind and solar power to make clean, renewable

energy competitive with coal and natural gas. Battery storage costs are also falling, which

is growing electric vehicle use and could help electric grids transfer energy from times when

it is plentiful to times when it is scarce. However, the intermittency of renewables imposes

significant challenges, especially over seasonal and other longer-term imbalances that are not

easily accommodated using battery storage.

Addressing these challenges e�ciently requires a portfolio of generation assets selected

optimally in conjunction with potential demand-side adjustments. Real-time retail prices

(RTP) that reflect the incremental cost and marginal willingness to pay for electricity are

a well-known but rarely implemented solution to incentivize the demand side (Borenstein and

Holland 2005, Borenstein 2005, Borenstein and Bushnell 2022)1 If electricity were priced at its

incremental value and cost, there would be new, powerful incentives to e�ciently store energy

on a distributed basis or otherwise shift or adjust consumption from times and places of rela-

tively scarce renewable supply to times and places of plenty. Automated smart devices acting

on customers’ behalf are already available and could be refined to aid such responses, but re-

main rare because incentives are limited (Bollinger and Hartmann 2020). One reason could be

that few utilities and regulators are aware of the potential, or perceive potential gains as small,

which they seem to be in fossil systems.

In this paper, we develop a model of power supply and demand to examine the extent

to which RTP could increase the social benefits of clean power with intermittent renewables.

We illustrate this potential by integrating a flexible demand system, one that includes both

overall price response and heterogerogenous interhour substitution possibilities, into a long-

term planning model that jointly solves for optimal investment and real-time operation of the

system. From this holistic model we can see how di↵erent aspects of demand response feedback

and influence both chronological operation and the portfolio of generation investments, in full,

long-run dynamic equilibrium. Holding all else the same, including the demand system, we

show how RTP versus flat pricing engenders di↵erent investment and more consumer and social

benefits in high-renewable systems as compared to fossil systems. Because existing evidence on

the degree and nature of demand response is limited, we consider a wide range of assumptions

about demand and other assumptions, like technology costs.

To derive these results, we bring together the engineering and economic literatures and

improve existing models in several ways. First, we simultaneously solve for investment in

1There are a few exceptions. Several states in the US have implemented RTP since early 1990s (Barbose,
Goldman and Neenan 2004), and Spain introduced RTP in 2015 (Fabra, Rapson, Reguant and Wang 2021).
While RTP did show some early success, others have shown limited participation, possibly due to varying
degrees of marketing e↵ort by utilities (Barbose et al. 2004, Goldman, Barbose and Neenan 2006).
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generation and storage capacities, real-time operation of the system, and a demand system

with di↵erent interhour elasticities for di↵erent end uses, as well as substitution between electric

power and other goods and services. Both supply and demand sides of the model can provide

reserves—upside and downside bu↵ers to guard against short-term imbalances in supply and

demand. The model, an extension of Switch 2.0 (Fripp 2012, Johnston, Henriquez-Auba,

Maluenda and Fripp 2019) is open source and adaptable to other settings.2 Finally, it better

accounts for the wide range of weather- and time-contingent circumstances by using a strategic

sample of days that are modeled in chronological detail. This sampling is critical given both

supply and demand are highly weather-dependent in clean-energy systems. Here we introduce a

novel two-stage method of selecting the sample days. In the first stage, we cluster days by daily

solar radiation, wind, and nominal demand, and select the central day in each cluster. The

second stage then identifies the most-di�cult-to-serve day over two years (727 days modeled

in hourly chronological detail) while holding fixed the capital selected in the initial stage. The

most-di�cult-to-serve day is then added to the initial sample, and the whole joint system,

including capital, is re-solved.

We apply the model to the island of Oahu, Hawai’i, for several reasons.3 First, its scale

is large enough to be emblematic of larger, more complex systems, but small enough to be

holistically modeled. Second, given Oahu’s isolation and lack of connectivity to other Hawaiian

islands, intermittency is an acute problem, since connectivity with other regions is not econom-

ically feasible. Third, Hawai’i was among the first to adopt an ambitious renewable portfolio

standard—100 percent renewable by 2045—which makes the analysis especially relevant to ac-

tual policy implementation. Fourth, Hawai’i depends on oil for its power production, making

wind and solar power cheaper than fossil fuels today, so it is early to face an economic crossover

that other regions will face in the future, as wind, solar, and storage move toward undercutting

coal and natural gas.

The main contributions of the paper are threefold. First, we estimate the costs, benefits, and

optimal generation mix of a 100 percent renewable energy system that accords with Hawai’i’s

renewable portfolio standard (RPS) and compare it to a conventional fossil-fuel power system

2Earlier versions of the model, which lack reserves and demand-side integration, have been implemented for
California, the Western United States, and other areas (Nelson, Johnston, Mileva, Fripp, Ho↵man, Petros-
Good, Blanco and Kammen 2012, Mileva, Nelson, Johnston and Kammen 2013, Wei, Nelson, Greenblatt,
Mileva, Johnston, Ting, Yang, Jones, McMahon and Kammen 2013, Ponce de Leon Barido, Johnston, Mon-
cada, Callaway and Kammen 2015, Sanchez, Nelson, Johnston, Mileva and Kammen 2015, He, Avrin, Nel-
son, Johnston, Mileva, Tian and Kammen 2016). Some other recent capacity expansion models better in-
tegrate real-time operation of the system and investment decisions, but use simpler accounts of demand
response, and can only consider short-run planning horizons for investment (one year at time) (oemof De-
veloper Group 2017, Dorfner 2018, Brown, Hörsch and Schlachtberger 2018, Palmintier and Webster 2015, van
Stiphout, Vos and Deconinck 2017, O’Neill, Krall, Hedman and Oren 2013, Jenkins and Sepulveda 2017).

3Oahu is the state’s most populous island (about 1 million), which comprises roughly two-thirds of the state’s
population and consumes over three-quarters of the state’s power. The island supports a large urban city
(Honolulu), plus a substantial tourist industry and several large military bases.
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(Fossil) and a least-cost system with no constraints on the generation mix (Unconstrained).

The model characterizes a full equilibrium in each case, jointly solving for investment, real-time

operations with reserves, and a time-varying price-responsive demand system. To our knowl-

edge, such dynamic equilibrium models have not been solved in the economics or engineering

literature.4 Second, for each kind of system (RPS, Fossil, and Unconstrained), we evaluate

the welfare improvement of having real-time marginal-cost pricing that can e�ciently mobilize

demand-side resources as compared to flat prices, which cannot. Lastly, we evaluate how much

gains from RTP are distributed across di↵erent types of customers with a di↵erent degree of

flexibility or interhour substitutability.

Cost assumptions for a wide range of power generation and storage alternatives, from which

an optimal portfolio is selected, are based on those in the Power Supply Improvement Plan

(PSIP) of the local utility, Hawaiian Electric Company (HECO).5 We consider scenarios for

which costs equal recent-past assumptions (2016), as well as scenarios that use the lower costs

projected for renewable and battery technologies in 2045 in the PSIP.6 The analysis is a single-

stage analysis in the sense that each scenario assumes the optimized system is built at one point

in time, although pre-existing assets can be retained. We do this to make clear comparisons of

high-renewable and fossil systems, and to show how much renewable power would be selected

in optimized systems with flat prices versus RTP. In practice, an optimal plan would make

investments gradually over time; Switch has the capacity to formulate such a long-term plan,

although we do not consider it in this paper.

Consistent with earlier studies, we find that RTP of power provides little social benefit

in conventional fossil-fuel systems, only 1.5 to 2.5% of baseline annual expenditure depending

on technology and fuel costs and interhour substitutability under baseline assumptions. These

baseline results assume an overall demand elasticity of 0.1, that 50% of the vehicle fleet is electric

(EV), and benefits of smart charging under RTP. However, RTP leads to a much greater social

benefit of 8.7 to 19.4% in a 100% clean system with otherwise identical baseline assumptions.

We believe these assumptions underlying these estimates are fairly conservative. If, however,

we optimistically assume an elastic overall demand of 2, which is not observed in history but

might arise in a future that is more automated, has more price variability, and prevalent free

or near-free electricity, the benefits of RTP are much higher. Specifically, the value of RTP

versus flat pricing roughly doubles in the fossil system (up to 4.9% of baseline expenditure)

and roughly triples in the 100% clean system (up to 62.7% of baseline expenditure). We also

4A working paper by Butters, Dorsey and Gowrisankaran (2021) considers optimal investment and operation of
batteries in conjunction with real-time operation of the system, but does not jointly optimize other forms of
storage or new generation sources, and they take demand as exogenous.

5See https://www.hawaiianelectric.com/about-us/our-vision.
6These cost assumptions are generally conservative. At this writing, costs for renewables and storage are closer
to 2045 assumptions than to 2016, while fossil fuel prices, projected to rise in the PSIP, are notably higher
than 2016.
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find greater benefits of RTP in high renewable systems if, in addition to elastic demand, 100%

instead of 50% of the vehicle fleet is electric, as EVs comprise a large amount of easy-to-shift

demand. Finally, we find that even inflexible demand types normally benefit from RTP, and in

some cases, nearly as much as flexible demand types do.

The other main finding is that clean energy systems are generally less expensive than conven-

tional fossil systems. Even with flat pricing, a 100% clean energy system is 30% less expensive

than a fossil system and only 5% more costly than a least-cost system that is 90% clean, ex-

cluding externality costs. With RTP and optimistic inter-hour flexibility, a 100% clean system

is 44% less expensive than a fossil system and only 1.7% more costly than a least-cost system

that is 97% clean. If demand is more elastic (elasticity = 0.5 instead of 0.1), the social benefit

with RTP relative to a fossil system with flat pricing exceeds 60% of expenditure in the fossil

system (costs fall while consumption benefits rise substantially), and 100% clean is least-cost,

not even counting externalities. Thus, as we transition from fossil-based to clean-energy elec-

tricity systems, the benefits of RTP grow by roughly an order of magnitude (6 to 12 times)

holding all other assumptions the same, while causing a meaningful reduction in the cost of

integrating clean renewable energy.

These numerical results may represent a lower bound on the gains of location-specific RTP,

for several reasons. First, we ignore pollution externalities, and since RTP favors clean energy,

it procures an external benefit. Second RTP increases the elasticity of residual demand faced

by large-scale generators during constrained times, thereby limiting market power (Borenstein,

Bushnell and Wolak 2002a). Thirdly, it implicitly creates free entry into the energy storage

market, enhancing competition. And finally, RTP will provide alternatives to, and ease eval-

uation of, expensive grid upgrades normally financed by rate-of-return regulation. Explicit

analysis of these auxiliary benefits of RTP is beyond the scope of this analysis.

The rest of the paper is organized as follows: Section 2 explains conceptually how the value

of RTP di↵ers in conventional and high-renewable power systems; Section 3 characterizes the

demand system and how we calibrate it; Section 4 reviews Switch which optimizes investment

and operations, as well as a Dantzig-Wolf algorithm used to equilibrate supply and demand and

thereby optimize the joint system; Section 5 summarizes capital and input cost assumptions

and the wide range of scenarios we consider; Section 6 summarizes the results; and Section 7

concludes with a discussion about the various reasons we find clean energy systems to be more

a↵ordable than other have, how reasonable assumptions about potential demand flexibility

may be, how the results may extend to larger, continent-scale systems with more inter-regional

connectivity, as well as some of the practical obstacles to optimal portfolio selection and imple-

menting RTP.
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2 Real-Time Pricing in Conventional and High-Renewable Power

Systems

Recent research shows that intermittency combined with the high cost of storage can in-

crease the cost of renewable energy from a system perspective (Gowrisankaran, Reynolds and

Samano 2016, Bushnell and Novan 2021), while transferring rents from incumbent producers

to renewable-energy generators and consumers (Liski and Vehviläinen 2020). A challenge for

intermittent renewables is that modern infrastructure has been built around systems with cen-

tralized and easily controllable generation. Electric grids operate through balancing authorities

that adjust electricity generation on timescales ranging from seconds to years, to perfectly bal-

ance supply with presumably inelastic, time-varying demand. Although marginal generation

costs vary over time in a conventional system, regulated retail prices tend to be flat, giving rise

to well-known ine�ciencies (Borenstein and Holland 2005, Borenstein 2005, Borenstein and

Bushnell 2022). Incremental costs, however, do not normally vary that much in conventional

systems, except when demand approaches the capacity constraint and marginal cost rises sub-

stantially. A critical concern is the strategic withholding of power during these constrained

times, which can cause tremendous spikes in wholesale prices (Borenstein et al. 2002a). RTP or

critical peak pricing can help resolve much of the ine�ciency that derives from flat retail pric-

ing in conventional systems, curbing peak demand and thereby reducing investment in rarely

used peaking power plants, and also reducing market power (Blonz 2016). Foregoing potential

demand response creates some deadweight loss in conventional power systems but the loss will

be much greater in systems with a large share of intermittent energy. With renewable energy,

the value of real-time pricing involves much more than simply curbing peak demand. It involves

shifting demand toward renewable supply.

To better appreciate how the potential value of RTP and demand response changes with

renewables, it helps to consider the integration process as it has progressed thus far. Ample

subsidies have helped to speed adoption of renewables and push down costs via learning-by-

doing (Van Benthem, Gillingham and Sweeney 2008). Today, solar and wind power are the

cheapest sources of energy on a levelized basis, even without subsidies. Having zero fuel costs

and minimal operating costs, almost all costs are fixed, with supply varying only with sunlight

and wind speed. When intermittent renewables make up a small to moderate share of total

generation, the existing infrastructure accommodates their variability in much the same way

it has always managed time-varying demand, by counterbalancing with directed generation

from thermal power plants. As larger shares of renewable energy are accommodated using this

conventional approach, system-level costs can rise significantly above the levelized costs from

any particular source.

Cost accretion happens mainly for two reasons. First, controllable generation must be
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built or retained to compensate for periods of low renewable power production. These plants

may burn either polluting fossil fuels or high-cost biofuels and may have higher marginal cost

than coal or nuclear. Providing spinning reserves from thermal power plants—ramping them

up and down to compensate for short-term variations in demand or renewable production—

requires running these plants at ine�cient fractional load levels. Renewable power and spinning

reserves also reduce the share of demand that can be served by coal and nuclear “base load”

plants that are designed to operate continuously at full capacity. This is a key reason why

renewables paired with cheap natural gas have cut severely into the rents gleaned by nuclear

and coal power. Second, as more intermittent renewable power is added to the grid, there

will be times when supply exceeds demand net of minimum operating capacities of thermal

plants. During these times renewable energy must be curtailed (i.e., discarded). California,

Hawai’i, Texas, Ireland, and many other places with high renewable penetration already curtail

a considerable amount of clean power, even while utility customers can simultaneously pay 30

cents per kWh or more for electricity.7

With retail prices far above the incremental cost of generation (zero or negative during

curtailment), flat pricing creates substantial marginal ine�ciency with flat pricing, even with

renewable energy penetration far below eventual decarbonization goals. The value of RTP

is thus more multifaceted as compared to the conventional case. It can curb demand during

times that are di�cult to serve (which may or may not be peaks), while also encouraging

greater use, and perhaps engendering new sources of demand, when incremental costs are low

or zero. The socially e�cient price might even be negative during curtailment if extra clean

power consumed during a curtailment event would substitute for polluting energy that would

otherwise be consumed at a di↵erent point in time.

High-cost critical peaks will also occur at di↵erent times and have a di↵erent character.

Peak demand normally occurs during sunny and sometimes windy summer days that tend to

have ample supply from renewables, and thus could be among the easiest to serve in a high-

renewable system. Instead, the most costly times to serve will be when renewable supply is

unusually low relative to demand for an extended period of time.8 More generally, demand

response can e↵ectively substitute for centralized storage, by shifting use from one time to

another, using demand-side thermal storage or strategic automated timing of flexible demands,

7Indeed, as documented by Borenstein and Bushnell (2022) and (Reguant 2019), retail prices generally exceed
marginal cost because substantial fixed costs are typically recovered using volumetric rates, exacerbated by
block pricing. During curtailment, this ine�ciency becomes especially stark.

8At this writing, in early Summer 2022, Texas is experiencing record heat and demand for electricity and
their system is handling it easily due to high production of wind and solar energy (see https://www.cnn.
com/2022/06/14/us/texas-energy-record-solar-wind-climate/index.html). In the future with far more
solar power, net production risk will be even smaller during such times. In the model we present here, the
most di�cult day to serve in a high-renewable system over 727 days of high-resolution benchmark weather and
demand data is November 22, 2008, which was very cloudy with little wind, but below-average demand.
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like electric vehicle charging and appliance use, by developing new flexible sources of demand, or

by indulging or sacrificing comfort or convenience during especially low- or high-priced times.

Much of these responses could be automated using smart systems, with or without direct

connectivity to the control room of the balancing authority. These kinds of demand responses

could reduce the costs of storage and/or costs associated with fractional operation of thermal

power plants, in addition to limiting costs of rarely-used peaking power plants and reducing

market power.

The interplay between demand-side adjustments and the optimal portfolio of generation and

storage investments is fairly complex. On the supply side, the available generation technologies

from which to select a portfolio matters, as does the cost of storage. Real-time operations

depend on the weather, history-dependent system status, and expectations about the future,

as these will govern the management of storage and spinning reserves. On the demand side,

the time-of-day, day-of-week, and weather-specific factors matter, both for the general level

of demand, and the degree of potential responsiveness and intertemporal substitution. The

novelty of this paper is that we consider all of these factors simultaneously in order to discern

the potential value of RTP in both conventional and high-renewable systems, all in an e↵ort to

shed light on the importance of retail pricing reform to decarbonization e↵orts.

3 Demand

A key novelty of this paper is its integration of a fully-specified interhour demand system with

Switch, a state-of-the-art planning model that jointly optimizes investment and chronological,

hourly operation of a power system. We, therefore, begin by describing the structure of the

demand system and how we calibrate it. The structure of the demand system, and the range of

assumptions we consider, is intended to encompass a wide scope around what might be possible

in a future with real-time pricing and automated response. The idea is to see how much more

valuable RTP is in clean, renewable systems versus fossil systems across this range of possible

demand systems.

3.1 A Nested-CES Demand System

The demand system is comprised as the sum of three nested, constant elasticity of substitution

(CES) utility functions that represent di↵erent types of demand. The outer layer of each utility

function assumes just two goods, electricity and all other goods, with a constant elasticity of

substitution ✓, which represents overall demand for electricity. The nested layer considers elec-

tricity demand in each hour within each 24-hour day, with an interhour elasticity of substitution

�. Aggregate demand in any given day is comprised as the weighted sum of three representative

pseudo-customers with di↵erent � values, flexible (�f = 10), medium flexibility (�m = 1), and

low flexibility (�l = 0.1). This means, holding average price within a day constant, a relative
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price di↵erence of 5% between hours within a day will cause about 50 percent, 5 percent, or 0.5

percent share baseline demand to be shifted from the high-priced hour to the low-priced hour,

depending on the pseudo-customer type.

This demand system can embody a wide range of demand responses. If one were to assign

all load share to low-flexibility pseudo customers, the demand system would nearly collapse

to a simple demand system that lacks interhour substitutability, prevalent in earlier studies

of RTP. If, however, we can identify sources of demand that may be easily rescheduled to

di↵erent times at minimal cost or disutility, the flexible demand component is well suited, as

the interhour elasticity of 10 implies little implicit cost to such rescheduling.9 The medium-

flexibility pseudo customers capture shiftability between these two extremes. By attaching

di↵erent load shares to di↵erent pseudo-customers, one can reasonably approximate almost any

degree of load-shifting potential. Note that, these inter-hour elasticity parameters pertain only

to shiftability of demand from one hour to another within a 24-hour period, not to the overall

amount of electricity consumed, which is captured by the outer elasticity (✓).10 By varying

the outer elasticity and shares of load attached to each type of pseudo-customer, we can assess

how much flexibility and overall responsiveness matter in conventional versus high-renewable

systems. Nevertheless, the functional form is approximate/heuristic; existing evidence cannot

yet inform the actual potential of demand response at a large scale, even if early experimental

evidence is encouraging (Bollinger and Hartmann 2020).

In the computational model, we partition a baseline load profile, drawn from actual historical

hourly demand, into these three pseudo-customers. The pseudo-customers thus di↵er with

regard to their budget and with regard to their calibrated share parameters (�h), because their

load profiles di↵er. The calibrated share parameters also di↵er by hour of day, and day of year,

to account for time-of-day and weather. We explain how implement this partition after formally

characterizing demand.

To formalize this demand system, denote the calibrated load shares on day d and pseudo-

customer i by �id and income by M id = Eid

s , where Eid is the baseline expenditure of pseudo-

customer i on day d, and s is the share of baseline state income spent on electricity. Thus,

define the demand for a pseudo-customer i on day d in hour h as xh(p|p̄, �i, �id,M id), using the

definition in equation 3. Aggregate demand on day d and hour h is given by the sum of the

demands from the three pseudo-customers:

xd
h(p|p̄) = xh(p|p̄, �l, �

ld,M ld) + xh(p|p̄, �m, �
md,Mmd) + xh(p|p̄, �f , �

fd,M fd) (1)

9Some engineering studies simplify consideration of such demand response by explicitly rescheduling such de-
mands as if the grid operator were making these decisions, rather than solving for equilibrium as we do here.

10Of course one could build an even more flexible demand system by assuming di↵erent overall demand elastic-
ities to di↵erent customer types or uses.
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The complete specification and derivation of the demand system is provided in the Online

Appendix.

While this demand system provides an intuitive and relatively simple way to embody a

range of heterogenous demand responses and inter-temporal substitutability that vary over

hours of day, seasons, and weather-related circumstances, it may under- or over-estimate actual

technical possibilities. For example, it assumes the same degree of substitutability between any

two hours within the same day. At least for some kinds of demand, substitutability may be

greater for hours nearer in time. It may also be an imperfect characterization of demand-side

storage, where the cost of shifting pertains to a loss of energy (e.g., heat loss or gain from

thermal storage) as opposed to a cost of utility and/or capital expenditure. At the same time,

the demand system assumes zero substitutability between days, when in reality substitution

between late in one day and early in the next may be fairly elastic. While this later assumption

may under-estimate the overall degree of flexibility, the structure makes it easy to scale up a

sample of representative days throughout the year to parsimoniously represent a portfolio of

days with weather and demand that are chronologically matched with supply.

3.2 Shares of Flexible Demand

This section describes how we estimate baseline loads for each kind of pseudo-customer. We

use hourly aggregate demand data for Oahu from the Federal Energy Regulatory Commission

to calibrate hourly load shares that are coincident with solar and wind data used in modeling

the supply side. This calibration accounts for the covariances between intermittent supplies of

each potential wind and solar project and aggregate demand. However, because some kinds

of demand are likely to be more time shiftable than others, we develop alternative interhour

flexibility scenarios based on estimated load shares that are known to be shiftable using current

technologies: air conditioning, water pumping and water heating.

Air conditioning demand is shiftable using ice storage, wherein ice is generated when elec-

tricity prices are low, and used for cooling instead of running the compressor when electricity

prices are high. These systems can be retrofitted onto existing air-conditioning systems. A

number of companies already market this technology to reduce demand charges11, to respond

to real-time variation in prices, or provide contingency or regulating reserves to the balancing

authority.12 Such systems may only require di↵erent, smarter controllers and network connec-

tivity. A considerable amount of flexible power is also used to pump water from aquifers to

11Demand charges, which are common for commercial electricity customers, link monthly bills to the highest
kW draw, typically averaged over a 15-minute period, from each commercial customer during the month
or year. However, because peak demand by an individual customer is unlikely to coincide with the system
peak, demand charges may do little to improve e�ciency relative to real-time pricing (Borenstein, Jaske and
Rosenfeld 2002b).

12Regulating reserves balance the electricity system in real time as demand fluctuates from moment to moment
while contingency reserves keep the system stable in response to larger disruptions, such as a power plant
unexpectedly falling o↵ line.
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storage reservoirs and tanks on hillsides; water is then gravity fed to homes and businesses.

Currently, most water pumping is done at night, because the water municipality receives a

slight discount under current time-of-use pricing. There should be a considerable amount of

flexibility in when pumping could occur, a flexibility that is mainly constrained by the capacity

of water storage. A number of companies have also developed smart water heaters, which can

heat proactively in relation to power availability (or prices) and typical use patterns instead

of reactively to hot water use. All of these systems embody an implicit form of storage that

may be less expensive than batteries, compressed air, pumped-water hydroelectricity or other

means. These systems can also provide a source of reserves to help maintain system stability

in the face of unexpected load fluctuations.

By considering loads only from these three principle sources, we believe our estimates of

demand-response potential should be conservative, because other kinds of electricity demand

for which we could not obtain estimates, or for which current technologies do not exist, may

nevertheless prove shiftable if appropriate incentives and technologies were to be made available.

For example, refrigerator/freezers and swimming pool pumps likely have large, time-shiftable

loads, but we do not explicitly consider them in this study because we were unable to obtain

data on their real-time use.

Another consideration is that over 70 percent of total demand on Oahu derives from com-

mercial customers, some of which have electricity already metered at 15 minute intervals or less

to accommodate demand charges specified in commercial tari↵s. Commercial customers have

proven a willingness to participate in RTP when the tari↵ is well-marketed to customers (see

(Barbose et al. 2004), especially the case of Georgia Power). The utility has also begun to install

smart meters for other customers. Even without smart meters, integrators could implement a

wide range of demand-response services, including reserve provision, by using other forms of

network connectivity to control power consumption of certain designated devices. Alternatively,

devices could be programmed to forecast and respond to price signals automatically.

Estimates of shiftable load in each hour of each month are drawn from Navigant Consulting

(2015), a private consulting report commissioned by Hawaiian Electric, a copy of which was

submitted to the Public Utility Commission. Although much of the report is redacted, obscuring

the methods used to estimate load shares from alternative uses, it is the only available load

share data, specific to Oahu, that we have been able to obtain. The starting point for our

estimates is a graph in the report depicting September 2025 projected end-use loads by hour

of the day. We measured the bars in the graphs by hand to estimate load shares in each hour

for this month, and summed those for air conditioning, water heating and water pumping to

obtain an estimate for the mid-September share of potentially shiftable load. Because loads

vary over time, and tend to be higher when it is warmer, presumably due to greater use of

air conditioning, we adjusted load shares for other months to account for this seasonality. We
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made this adjustment using hourly load estimates provided in the Navigant report for February,

May, August and November of 2014, but were not partitioned by end use. These hourly loads

were regressed against a polynomial of hour-of-day and average temperature in each month.

Loadmh = �0 + �1h+ �2h
2 + �3h

3 + �4PVmh + �5Tmh.

where Loadmh is demand in hour h of monthm, h hour of the day, PVmh is distributed generation

from photovoltaic solar (which may be associated with temperature), and T is temperature.

We attribute temperature-sensitive load to air conditioning, and then using load shares given

for September 2025 as a baseline, we infer the air conditioning share for the other months,

linearly interpolating between February, May, August and November. Load shares in each hour

attributable to water pumping and water heating is assumed to be same across all months of

the year.

We consider three di↵erent scenarios (optimistic, moderate, pessimistic), each of which

assigns di↵erent shares of the potentially-flexible and other load to pseudo-customers with

di↵erent interhour substitutability. The assumptions for each scenario are reported in Table 1.

In figures 1 we plot the implied shares of highly flexible, moderately flexible, and inflexible

demand in total and by hour and month for each of the three scenarios.

In the end, we cannot know in advance how much demand is truly flexible or the appropriate

elasticities to use, nor anticipate how customers will choose to engage with a well-designed

RTP program. Evidence on demand response remains limited, mostly focused on residential

customers, and has not yet benefited from widespread automated price response. We anticipate

that commercial customers would comprise the bulk of participating flexible demand, at least

initially. Because commercial customers comprise over 70% of Oahu’s demand and commercial

demand tends to have a large share of potentially-shiftable load, the optimistic scenarios assume

that a large majority, but not all, of commercial customers with shiftable load would actively

participate in a demand response program, and zero participation by residential customers.

That optimistic scenario might be justified by the historically high participation of commercial

customers in RTP programs like the one in Georgia (Barbose et al. 2004). We anticipate that

participation could be even greater in future Hawai’i, since price variation will be far greater

than Georgia and advanced computing technologies could make participation convenient and

economic.

We do not explicitly account for the capital cost of enabling equipment, such as ice or hot

water storage and smart controllers, which might enable some kinds of demand response, nor

do we account for the thermal energy loss that may accompany some of these systems.13 Some

measure of these costs is implicit in the elasticities of substitution. The challenge with explicit

13Thermal loss appears to be modest over the daily timescale considered here (about 5%), far less than with
battery storage, for example (Heine, Tabares-Velasco and Deru 2021)
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account of costs is that they tend to be building specific. The estimated gains to customers

from RTP provide an an upper bound for costs that would be economic.

Table 1: Assumptions about flexible demand and demand-side reserves

Scenario

Shares (%) Hourly demand (MWh)
Potentially flexible load Remaining load Mean (std. dev.)
High Mid Inflex High Mid Inflex High Mid Inflex

�f = 10 �m = 1 �l = 0.1 �f = 10 �m = 1 �l = 0.1 �f = 10 �m = 1 �l = 0.1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1)+(4) (2)+(5) (3)+(6)

Optimistic 67% 5% 28% 15% 5% 80% 323 (62) 43 (6) 497 (56)
Moderate 33% 5 62% 8% 5% 88% 160 (31) 43 (6) 661 (85)
Pessimistic 15% 5% 80% 0% 5% 95% 56 (13) 43 (6) 765 (103)

Demand-side reserves Yes No No

Notes: The table reports assumed shares of flexible, mid-flexible, and inflexible demand in each of the three scenarios. �
denotes the within-day interhour elasticity of substitution. Column 7 is the sum of columns 1 and 4 multiplied by hourly load
and weighted by the size of the cluster represented by the sample day (see section 4.3); columns 8 and 9 similarly aggregate
columns 2 and 5 and columns 3 and 6. Standard deviations of the loads across hours are in parentheses.

3.3 Demand-Side Reserves

Up reserves normally refer to residual capacity by dispatchable generators that can ramp up in

the event that a power plant drops o✏ine, wind or solar energy generation unexpectedly falls,

or demand suddenly surges. Reserves can also be provided by the demand side, and this is

typically what power engineers call demand response, while economists normally connect the

term to the more general idea of price-sensitive demand. Historically, demand-side up reserves

have involved contracts between the balancing authority (e.g., utility or ISO) and large-scale

users of electricity that give the balancing authority the ability and right, in exchange for a

rate reduction, to remotely reduce or terminate power supply to participating customers during

certain critical events (note that “up” reserves are specified from a generation perspective, so

they correspond to reducing load). In Hawai’i, residential customers have also participated in

a program that gives residential customers a $3 monthly discount in exchange for allowing the

utility to suspend power supply to water heaters during critical events. Similarly, down reserves

correspond to the option of quickly ramping down a power plant or increasing energy use in

the event of a net supply surge, which might result from a sudden fallo↵ of demand or supply

surge from intermittent solar or wind.

The model presented here includes demand-side participation in reserve markets for both

up and down reserves, with only highly-flexible demand types assumed to participate. Reserves

can also be supplied by the supply side, either from batteries or dispatchable generators. On

the demand side, we incorporate reserve provision into flexible-type demand by applying a net
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Figure 1: Demand flexibility scenarios by hour and month
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The graphs show three scenarios for interhour demand flexibility, optimistic, moderate, pessimistic, respectively.
Note that all demand types are assumed to have the same overall demand elasticity for electricity (0.1 in the
baseline case). Flexible, midflex and inflexible loads are assumed to have within-day interhour elasticities of
substitution equal to 10, 1 and 0.1 respectively. Each sample day is assigned to di↵erent weight for representa-
tiveness, indicated at the bottom of the pessimistic panel. See Section 4.3 for an explanation of how we selected
days and assigned weights.

cost that includes sale of up and down reserves and purchase of energy, all at real-time prices.

We define these as follows:

xu
h = x⇤

h (2)

xd
h = max(xh)� x⇤

h (3)

where x⇤
h is energy use in hour h, xu

h is demand-side up-reserves provision (option to decrease

demand) in hour h, xd
h is demand-side down-reserves provision (option to increase demand) in

hour h, max(xh) is the maximum electricity demand when price equals an imposed minimum

($1 per MWh). The minimum price limits demand that could otherwise rise to infinite levels
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given the constant-elasticity structure of the demand system. The flexible pseudo-customer

chooses x⇤
h (and implicitly xu

h and xd
h), resulting in a net cost given as follows:

Net Cost = p⇤hx
⇤
h + puhx

u
h + pdhx

d
h (4)

= p⇤hx
⇤
h + puhx

⇤
h + pdh · (max(xh)� x⇤

h) (5)

= x⇤
h · (p⇤h + puh � pdh) + pdh max(xh), (6)

i.e., the incremental cost per unit of consumption is p⇤h + puh � pdh.

3.4 Calibration of Hourly Demand Shares

We calibrate demand scenarios by estimating the share of aggregate load in each hour and each

sample day used for three potentially shiftable loads: water heating, water pumping and air

conditioning. Typically these uses of power can be shifted many hours at relatively low cost

using existing technologies. Then, as summarized in Table 1, we suppose optimistic (67%),

moderate (33%) and pessimistic (15%) scenarios, each of which assumes a di↵erent share of

these potentially-shiftable loads will actually have high interhour substitutability within a day

(elasticity = 10). Across all scenarios we assume just 5% of baseline demand has moderate

substitutability between hours (elasticity = 1). We assume that 80-95% of remaining load

(not for water heating, water pumping or air conditioning) is highly inelastic between hours

(elasticity = 0.1). The optimistic scenario could be achieved with widespread adoption of

real-time pricing, thermal storage, and automated demand-response systems by commercial

customers and little or no adoption by residential customers.

We use a baseline model that assumes an overall demand for energy (capturing substitution

between electricity and all other goods) that is highly inelastic (elasticity = 0.1), which is

consistent with a recent estimate with a strong study design and relatively similar climate

and marginal price profile (Ito 2014). Looking over a longer horizon, a more recent study by

Deryugina, MacKay and Reif (2020) shows compelling evidence of a higher elasticity of 0.3, so

we believe our baseline is conservative. While some studies find even larger demand elasticities,

they tend to be based on poorer study designs and we believe it is important to have a baseline

model that is reasonably conservative. Within our model, this outer elasticity accounts for

overall consumption response to the price level, which is more akin to a longer-run response.

This kind of responsiveness helps with seasonal imbalance and long-duration weather events,

and adjusts overall scale of demand modestly depending on average prices. However, because

it seems possible that new technologies and energy demands might arise in a world with highly

variable (and often free or nearly free) electricity, we also consider scenarios with larger demand

overall elasticities (0.5 and 2.0). In our view, an elasticity of 0.5 is highly plausible, and 2.0 is
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much less likely, but conceivable with widely varying prices, large stretches of free or nearly-free

energy, and induced innovation.

3.5 Electric Vehicles

An important consideration for modeling future power systems with high-penetration renew-

ables is the potential growth of electric vehicles. Electric vehicles represent a new source of

power demand and, given their large and growing battery sizes, a new source of power stor-

age or interhour flexibility that might also provide reserves. Like demand-side flexibility, it is

highly uncertain how quickly electric vehicles may grow as a share of the vehicle fleet. Given

the unique nature of power demand from electric vehicles, plus the fact that they comprise a

small share of historical loads used to calibrate the demand functions described above, we treat

them separately. We also consider scenarios with a wide range of electric vehicle adoption,

0.5% (the share around 2016), 50% and 100%. In variable pricing environments we assume

that vehicle charging is optimally scheduled to least-cost times in each day, and thus makes

high-penetration renewable systems easier to achieve, but do not allow for any interday substi-

tution of charging (which will likely be feasible). In fixed-price environments we assume vehicle

charging normally occurs as soon as vehicles arrive at home or work, based on trip invento-

ries from the National Household Travel Survey (Fripp 2017, Das and Fripp 2015, FHA 2009).

This shifts up the evening peak more than other times, and makes high-penetration renewable

systems more costly.

4 Generation Cost, Weather Assumptions, and Equilibrium

Our analysis uses and extends Switch 2.0 14 (Fripp 2012, Johnston et al. 2019), an open-

source power planning software that uses mixed-integer linear programming to minimize the net

present value of the cost of electricity production subject to operation and policy constraints.

The main decision variables are generation capacities at each candidate project site and the

amount of power to produce or store at each project site during each hour of the planning pe-

riod. Constraints require adequate power to satisfy demand plus reserves during all hours, and

satisfaction of any exogenous policy constraints, such as a renewable portfolio standard (RPS).

Exogenous factors include high-resolution weather data paired with each candidate project site

to indicate generation in each hour for any chosen level of installed capacity, plus technology

and fuel costs.

Switch combines an operational model, similar in detail to commercial production cost mod-

els such as GE MAPS or Plexos, and a long-term capacity expansion model, similar to Ventyx

Strategist or PowerSimm Planner. Commercial capacity planning models typically consider the

distribution of loads exogenously imposed on a system, neglecting price response by customers.

14http://www.switch-model.org
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Moreover, conventional planning or expansion models generally use unordered sets of time steps,

and thus do not have enough temporal detail to model the operation of power systems with

a large share of time-varying renewables or storage. Such power sources may need to be cur-

tailed or be balanced by interhour load shifting or energy storage, which can only be modeled

accurately with chronological time steps. In contrast to conventional capacity planning models,

conventional production cost models can optimize chronological management, but assume fixed

generation portfolios that must be selected by other means. E�cient integration of renewables

can be greatly enhanced by simultaneously considering both capacity and chronological opera-

tion decisions, as does Switch (Fripp 2012, Johnston et al. 2019, Nweke, Leanez, Drayton and

Kolhe 2012, Sullivan, Eurek and Margolis 2014). The supplement to this paper provides the

main equations and constraints used in Switch.

4.0.1 Utility-Scale Solar

Land available for utility-scale solar was restricted to parcels zoned for agricultural or country

use, excluding Class A agricultural land per Hawai’i statute. This excludes a significant amount

military land, and the military plans to install a considerable amount of solar. We also exclude

land with a slope greater than 10%, land within 50 meters of street centerlines, and parcels with

any directional dimension less than 60 meters. These areas are indicated in gold in Figure 2.

We assume that the photovoltaic installations use single-axis tracking and require 7.5 acres of

land per MW (AC) of capacity. This is roughly in the lower quartile of the national statistics

indicated by the National Renewable Energy Laboratory (NREL)15 and is 15% higher than the

6.5 acres/MW reported by Oahu developers for recent projects. We assume the systems have

a ground cover ratio of 0.45. These assumptions a↵ect the capacity factor when the sun is low.

We then use NREL’s PV Watts tool to calculate hourly output for each 4 km cell using 2007-08

irradiance data from the National Solar Radiation Database (NSRDB) (Sengupta, Xie, Lopez,

Habte, Maclaurin and Shelby 2018, Akar, Beiter, Cole, Feldman, Kurup, Lantz, Margolis,

Oladosu, Stehly, Rhodes et al. 2020).

4.1 Rooftop Solar

The potential quantity of rooftop solar on Oahu and the amount oriented in each direction (flat

roofs or North-, East-, South-, or West-facing roofs) was calculated from the Google Project

Sunroof (https://sunroof.withgoogle.com/accessed10/1/2019). Rooftop locations were

calculated from Google Map images.16.Visual review of many roofs and statistical comparison

of census tract population and roof coverage indicate accurate identification. We assume that

panels on sloped roofs are tilted at 25 degrees and panels on flat roofs are tilted at 5 degrees,

15See http://www.nrel.gov/docs/fy13osti/56290.pdf.
16See Google Maps Static API, https://developers.google.com/maps/documentation/maps-static/, ac-
cessed 10/1/2019
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Figure 2: Solar and Wind Resources

This map summarizes solar and wind resources on Oahu from which Switch selects
sites to build. Potential build sites for solar are indicated in gold, rooftop solar in
red, possible onshore wind turbine sites in black dots, and o↵shore wind farms by
stars in the inset. Total capacities available in terms are MWh are summarized in
Figure 3. Sources: see text.

matching assumptions in the National Renewable Energy Laboratory’s Annual Technology

Baseline (ATB) (Akar et al. 2020). Hourly generation profiles of photovoltaic systems are

modeled using parameters from the ATB and solar data from the National Solar Radiation

Database for 2007–08 (Sengupta et al. 2018).

4.2 Wind Potential

On shore wind potential was estimated using a screening of available land similar to solar.

Only land zoned for agriculture or country and not within 300 meters of other zones was

considered. Slopes were restricted to 20 percent grade or less, and not within 30 meters of

steep slopes, to eliminate narrow ridge tops and valleys (Das, Chermakani and Fripp 2016).

A map of potentially developable locations for wind turbines is shown in figure 2, together

with solar resources. We considered wind turbine density of 8.8 megawatts (MW) per square

kilometer (km2), which is conservatively less dense than the current Kahuku wind farm already

installed on the island (12.9 MW/km2), but on the high end of 5-8 MW/km2 that is estimated

by Denholm, Hand, Jackson and Ong (2009). Potential turbines were clustered by region into

separate scalable projects. Hourly behavior of each potential project—its coincident potential

capacity—is calculated based on historical meteorological modeling conducted for the Oahu

Wind Integration and Transmission Study (Corbus, Schuerger, Roose, Strickler, Surles, Manz,

Burlingame and Woodford 2010). For all practical purposes, there is an unlimited supply of
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o↵-shore wind potential with a high capacity factor of an estimated 43 percent, which enters

the model as a single scalable resource.

4.3 Sample Days and Investment Decisions

The model solves for a 30-year planning horizon using 12 representative days in each in-

vestment period, plus a 13th day that represents the most-di�cult-to-serve day over a 727-day

period of baseline weather and demand (based on years 2007 and 2008). Each selected day is

modeled chronologically with hourly resolution of demand and generation. The twelve repre-

sentative days were selected using k-means clustering of three historical variables—mean daily

demand, mean daily solar radiation, and mean daily wind—assuming a full build out of po-

tential solar and wind capacities. The central day of each cluster (k=12) was selected, with

each day weighted in accordance with the number of days in its associated cluster, and then

the model was solved for the optimal portfolio of assets over the planning horizon. This initial

solve assumed fixed, perfectly inelastic demand. Then, holding the selected portfolio of gen-

eration and storage assets fixed, we solved a chronological operation model over all 727 days

(17448 hours), imposing a penalty of $10 per kilowatt hour for any demand that went unserved.

The most costly day from this operation model was assigned as the 13th sample day (derived

from November 22, 2008). This day was not exceptionally high demand, but was exceptionally

cloudy and not especially windy. We then recalculated the clusters and weights using the final

set of 13 sample days; that is, we assigned each historical date to the nearest sample date (in

terms of solar radiation, wind, and demand), then weighted each sample date based on the

number of historical days that were closest to it. We then re-solved for the optimal portfolio

of assets, which generally resulted in no instances of unserved load under perfectly inelastic

demand when the system was tested against the full 2-year chronology. We held the sample

days and weights fixed at these values for all scenarios.17 Note that this sampling strategy is

somewhat conservative because it assumes several days each year (2%) that are as di�cult to

serve as the most di�cult day over a two-year horizon.

The analysis here is a single-stage analysis in the sense that each scenario assumes all new

assets are built at one point in time (i.e., 2045). Switch is designed to consider a series of

investment windows so as to optimize a long-run plan or transition. However, because our

focus in this paper is on the value of RTP, we chose to simplify this part of the problem so

17In an earlier version of the paper we sampled the 15th day of each month of the year and assigned equal
weights, which can miss especially di�cult-to-serve days. Since demand response is more valuable on di�cult
days, or when days are more varied, we underestimated the value of real-time-pricing by a remarkably large
margin, a point that was gently pointed out by an anonymous referee. We considered a few cluster-based
sampling strategies besides this one, including k-means clustering based on hourly (not daily) wind, solar, and
demand, or minimizing di↵erences between the full and sample empirical cumulative distributions of wind,
solar, and demand (Kolmogorov-Smirnov statistics). These approaches were slightly inferior in that they led
to a slightly more costly system under perfectly inelastic demand.
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as to provide more clarity about the long-run tradeo↵s of this critical policy choice. It is also

possible to add more sample days to gain a fuller representation of the joint distributions of

time, weather, supply, and demand; this does not appear to change our results in a substantial

way, but may be useful for fine-tuning an actual resource plan.

4.4 Equilibrium: Merging Switch with Demand

Iterations between Switch and the demand system were completed as follows. First, we solve

Switch for a baseline load profile, which is connected to either actual 2007 loads or projected

loads for 2045 (di↵erences are discussed below). Tentative prices are derived as marginal costs

(shadow values of the constraints specified in the Online Appendix), and these are o↵ered as

prices to the demand system. The demand system returns optimal quantities given these prices,

and also reports Marshallian consumer surplus minus a fixed o↵set – i.e., the line integral of

demand taken from baseline prices to o↵ered prices. 18 Switch then minimizes the cost of

serving the new quantities, sending new prices based on marginal costs. During successive

iterations, Switch constructs a linearized demand system from the convex hull of demand and

associated willingness to pay (consumer surplus plus total expenditure). In other words, it

approximates total willingness to pay as a convex combination of willingness to pay from prior

iterations (i.e., any linear combination of prior bids with total weight of 100%). During each

iteration, Switch chooses a new system design to maximize welfare (willingness to pay minus

cost) and o↵ers new prices. This cycle repeats until there is no further improvement in total

surplus from having new prices o↵ered and receiving new quantity bids.

This method is a Dantzig-Wolfe decomposition of the joint supply-demand problem (Dantzig

and Wolfe 1960). With this method, solutions from the supply problem, in which consumers

are given quantities based on the linearized demand function, represent a lower bound on

surplus; solutions from the demand problem, in which consumers can choose any amount they

want without changing prices, provide an upper bound on surplus. We stop iterating when the

di↵erence between these two measures is less than 1 percent of baseline electricity expenditure.19

18To find the correct competitive equilibrium in this iterative manner requires that we use Marshallian surplus
rather than compensating or equivalent variation. Because nested-CES utility is well behaved, this high-
dimension integral is not path dependent (Takayama 1982). And because income e↵ects are small, owing to
the fact that electricity expenditure is a small share of income, this measure of surplus is also very similar to
compensating and equivalent variation or money-metric utility. For this reason, we report only Marshallian
consumer surplus.

19As an aside, note that this algorithm might be used to coordinate supply and arbitrary non-linear demand
to aid price discovery in a power system. Such coordination could be challenging if a large share of demand
is highly flexible, as we anticipate it will be (e.g., EV charging and some kinds of thermal storage). As
the elasticity of intertemporal substitution approaches infinity, some sources of demand would need to be
explicitly scheduled, and this algorithm can e↵ectively achieve this in a decentralized manner (Callaway and
Hiskens 2010).
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5 Cost assumptions and scenarios

5.1 Cost Assumptions

The inputs for the Switch model are based on Hawaiian Electric Company’s Power Supply

Improvement Plan (PSIP) and are summarized in Table ?? and Table ??. The report lays out

projected costs each year from 2016 through 2045, and we consider models with costs at each

endpoint to show sensitivity of results to cost assumptions.

We summarize average capacity factors (normalized production potential) for the renewable

sources in figure 3. In the optimization model, capacity factors for each project vary by hour.

While projects with higher average capacity factors are more likely to be selected from the

optimization routine, the timing of output relative to demand and other projects also matters.

Figure 3: Average output and potential capacity of renewable energy sources on Oahu
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The graph shows the resource capacity of di↵erent potential sources of renewable energy, each ordered from
highest average output (capacity factor) to lowest. For perspective, peak demand on Oahu is about 1000 MW.
A project with a 0.25 capacity factor would produce an average of 25% of its nameplate capacity throughout
the year.

5.2 Scenarios

We solve the full model under a number of scenarios to explore sensitivity of results to di↵erent

assumptions. The scenarios span combinations of the following sets of assumptions. Solving

many scenarios also allows us to check internal consistency of the results, which builds confidence

that the models converged correctly, as each is solved independently.
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Most of the di↵erent sets of assumptions have been detailed above. Overall demand is

likely inelastic, so we focus mainly on results with an overall demand elasticity for electricity

of 0.1 (the elasticity of substitution between electricity and all other goods); this assumption is

somewhat conservative given compelling recent evidence that demand is more elastic over the

longer run (Deryugina et al. 2020). However, we do consider scenarios with larger elasticities,

partly because some scholars may find these more plausible, but mainly because broader imple-

mentation of RTP combined with automation could cause demand elasticities to grow larger.

Indeed, new uses for electricity could arise to make use of free or very inexpensive electricity,

which will be prevalent for significant stretches of time under high-renewable scenarios (e.g.,

times of curtailment), and these new intermittent demand sources may be more elastic. While

higher-elasticity scenarios are speculative, they help to demonstrate the upside potential with

renewable energy integration.20

The two load profiles, actual 2007 and projected 2045, di↵er mainly in their degree of

variability, including seasonality. The 2045 projection for demand reshapes the 2007 profile

to match Hawaiian Electric Company’s projected peak and average load for that year holding

prices fixed. Because Hawaiian Electric Company (HECO) reports a projected peak load of

1065 MW and average of 861.4, but the historical peak and average were 1249 and 955 (in

2007), the profile is flatter for 2045 than it is for 2007.21 Because seasonal variability may be

more costly to manage than intraday variability, comparison of these scenarios provides some

sense of this cost of seasonality.22

Much of our discussion focuses on cost di↵erences between flat and variable, marginal-cost

pricing (RTP), and how these di↵erences vary across other sets of assumptions. Considering

all combinations of the above scenarios yields 3 ⇥ 2 ⇥ 3 ⇥ 3 ⇥ 3 ⇥ 2 ⇥ 2 = 648 scenarios. In

addition to these scenarios, we solved models along a path wherein we constrain the percent

renewable to a range of values between the least cost (unconstrained) portfolio and 100% clean,

holding all else the same. This allows us to trace out the social cost (loss in producer plus

consumer surplus) of additional renewable energy under each set of assumptions. Note that

we do not consider the external cost of pollution emissions. Reduced pollution externalities

ought to be weighed against these cost curves; the point is focus squarely on the shape of this

cost function and how RTP influences it.23 This exercise added over a thousand additional
20We thank Stephen Holland for suggesting that we consider more elastic demand.
21To reshape historical load to HECO’s projection, we multiplied baseline demand by multiplying the historical
loads by 0.693 and adding 200 MW, which reduces both seasonal and intraday variability by about 30 percent.

22We do not know how HECO projected future peak and average loads. It could be that they assume a
substantial share of residential demand, which comprises much of the peak, is assumed to self-generate.
Moreover, the numbers reported in the PSIP do not appear consistent with what was used in their own
modelling and that of their consultants during the planning process. Thus, it is not clear whether HECO
really believes that seasonal demand variability will decline.

23We also omit consideration of innovation and learning by doing, which can also reduce costs.
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scenarios. Computing time required to solve a single scenario can range from less than an hour

for flat-price scenarios, to several days for some of the dynamic scenarios with more elastic

demand, where many di↵erent resources and demand profiles are on the margin. We used the

University of Hawai’i’s high performance computing facility with thousands of state-of-the-art

cores to solve many models simultaneously. Although space constrains us from reporting all

individual scenarios, we have characterized many of them here, and have developed a website

with drop-down menus that will allow readers to explore details of any particular scenario

(http://www2.hawaii.edu/~mjrobert/power_production/).

Welfare calculations consider changes in Marshallian consumer surplus (CS), producer sur-

plus (PS), and charging costs for electrical vehicles (EV), which are treated separately but

included in total CS. We also calculated CS for each type of pseudo-customer, each having

di↵erent interhour flexibility and base load profiles. CS changes are similar to CV and EV,

given the relatively small share of expenditure, so we do not report them. Producer surplus is

the change in revenue minus total cost. Note that these calculations do not include fixed cus-

tomer charges or rebates, which could be used to change the overall balance of welfare between

customers and producers. For this reason, it may be more meaningful to focus on changes in

total surplus and di↵erences across pseudo-customers. Also note that we do not explicitly ac-

count for fuel savings that may derive from greater EV use. Comparison of low versus high EV

scenarios are meant to show how EVs could change the value of variable versus fixed pricing,

since EVs embody a potentially large block of flexible demand.

6 Results

To ease comparison of scenarios, results are reported as the di↵erence between a particular

scenario and a baseline scenario.24 In most cases, the baseline scenario, indicated by the bold-

faced sets of assumptions in Table 4, assumes fossil-based generation, future 2045 costs and

projected load profile, flat pricing, and an overall demand elasticity for electricity of 0.1 (the

elasticity of substitution between electricity and all other goods). Note that under flat pricing

scenarios, interhour demand flexibility has no bearing on the outcome. We choose this scenario

as the baseline because we presume that it is the future that utilities would have envisioned in

the absence of clean energy, particularly wind and solar. To make welfare calculations easy to

interpret, we report these as percent di↵erences from the baseline level of total expenditure on

electricity.

24There are practical as well as interpretative challenges with using total surplus as a basis for comparison.
Technically, it is di�cult to numerically integrate price to infinity, especially with CES utility. In addition,
electricity expenditure is a small share of overall expenditure, even at baseline prices.
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6.1 Main Results: The Value of RTP and Cost of Clean Power

Table 5 reports a subset of the main results for scenarios with an overall demand elasticity of

0.1 and 50% EV penetration. The table stratifies scenarios across four characteristics (1) Policy

objective (fossil-based or 100% clean generation mixes); (2) Technology cost (2016 or projected

2045); (3) Demand flexibility (optimistic or pessimistic); and (4) Pricing (flat or RTP). A

fuller set of results, including unconstrained scenarios (a surplus-maximizing generation mix,

excluding externalities) is reported in the Online Appendix. Comparing di↵erent rows from

this table, one can infer the essential findings. The value of RTP, holding all else the same, is

given by comparing two adjacent rows. Outcomes reported for each scenario include the share

of renewable energy, average price, average quantity (MW of load), the standard-deviation of

price, and the change in total surplus measured as a percent of baseline expenditure (future

fossil-based system with flat prices). The last column gives the change in total surplus from

using RTP versus flat pricing, holding all else the same.25In Table 6 we break out components

of the total surplus changes reported in column 8 of Table 5. Note that the change in consumer

surplus (� CS) includes cost reductions from optimally scheduling EV changing, which is why

it can di↵er from some weighted average of CS changes for di↵erent demand types (highly

flexible, medium flexible, and inflexible).

Several findings can be parsed from this table, including the central point: while real-time

pricing has relatively little value in a conventional fossil-dominated systems (1.5 to 2.5 percent

of baseline expenditure), the value is considerably larger in a 100 percent renewable system (8.7

to 19.4 percent of baseline expenditure). The other key finding is the remarkable a↵ordability

of clean power systems under projected future costs. Compared to a conventional fossil system

in 2045, a 100 percent renewable system is projected to increase total surplus by 30.4 to 44.1

percent of baseline electricity expenditure, mainly depending on whether flat pricing or RTP

is employed. These gains are only slightly less than the unconstrained optima which increase

surplus by 35.0 to 45.8 percent, especially with RTP (unconstrained scenarios are reported in

the Online Appendix). Indeed, the unconstrained optima with RTP has 97 percent renewable

energy in 2045, and the cost of increasing renewable share beyond this level is modest. We

elaborate upon and refine this point below.

We present a larger set of results in figures 4 and 5. Figure 4 shows the value of RTP in

comparison to flat pricing, all else the same, classified across a few dimensions: (i) fossil-based,

100-percent renewable, or unconstrained build portfolios (columns); (ii) current (2016) or future

(2045) costs (rows); (iii) degree of interhour flexibility (the bars); (iv) higher or lower EV vehicle

penetration (the whiskers); and (v) 2007 baseline load profiles, which have more inter- and intra-

day demand variability. The graph shows that higher EV penetration and actual 2007 demand

25The fossil scenarios include a fixed amount of clean energy that is preexisting. The clean share changes slightly
across scenarios because the total amount of energy changes.
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profile make RTP more valuable. The value of RTP in the unconstrained model is more similar

to the fossil-based system with 2016 costs and more similar to the 100-percent-renewable case

with future costs. This result is not surprising given the unconstrained model selects a more

modest clean energy portfolio under 2016 costs (39-57%), wherein balancing is achieved mostly

through ramping of fossil plants as with a conventional system, and chooses a near-100% clean

energy portfolio under 2045 costs (89-97%).

The second graph (Figure 5) shows the same results from from a di↵erent vantage point;

it shows the social cost of a 100% clean system (negative change in producer plus consumer

surplus) relative to fossil and unconstrained systems, holding all else the same. It is important

to emphasize that these social costs exclude external costs of pollution. Under 2016 costs, a

100% clean system is roughly 30% more expensive than a fossil system with flat pricing, but

just 15% to 20% more expensive than fossil with RTP. The cost of a 100% clean system relative

to an unconstrained (least cost) system are visibly indistinguishable from the fossil baseline

under 2016 costs. Under projected 2045 costs, however, a 100 percent renewable system is

almost 30% less costly than a fossil-based system that allows no further building of renewables,

and just 5% more expensive than an unconstrained optimum under flat pricing, and again half

to two-thirds this amount under RTP.

Figure 6 shows how the social cost of renewable energy rises as the share of renewable

energy increases from the optimal portfolio (greatest surplus, excluding pollution externalities)

to 100 percent renewable. The graphs juxtapose how costs rise with flat vs RTP, with both

pessimistic and optimistic interhour flexibility, while also illustrating the influence of electric

vehicles, overall demand elasticity, and 2016 versus 2045 technology. Costs displayed are all

less than 100% of the baseline, indicating that a clean system is less expensive than a fossil

system at projected 2045 prices. While costs increase as the share of renewable energy rises

above the least-cost share, and markedly so with flat pricing under 2016 costs, it is apparent

that the cost curves rise much less under 2045 input costs and under RTP.
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Table 2: Generation Equipment and Maintenance Costs

Technology Generators Year Capital Cost Fixed Variable Useable Outage
Built O&M O&M Life Rate

($/KW) ($/Year) ($/MWh) (Years)
Biomass H-Power 1989 2042.05 18 61 0.41
Fossil-fueled Airport DSG 2013 585.67 37.46 61
Fossil-fueled CC 152 2045 1667.97 19.08 4.49 30 0.05
Fossil-fueled CIP CT 2009 585.67 40.76 61
Fossil-fueled IC Barge 2045 1460.71 38.04 20.96 30 0.02
Fossil-fueled IC MCBH 2045 3152.36 38.04 20.96 30 0.02
Fossil-fueled IC Schofield 2018 2706.48 38.04 20.96 30 0.02
Fossil-fueled IC Schofield 2045 2473.99 38.04 20.96 30 0.02
Fossil-fueled Kalaeloa CC1 1989 2042.05 6 61
Fossil-fueled Kalaeloa CC2 1991 2042.05 6 61
Fossil-fueled Kalaeloa CC3 1991 2042.05 6 61
Fossil-fueled Waiau 1973 585.67 3.46 77
Solar PV CentralTrackingPV 2012 3218.61 30 v
Solar PV CentralTrackingPV 2016 3218.61 30 v
Solar PV CentralTrackingPV 2019 1934.12 13.96 30 v
Solar PV CentralTrackingPV 2045 1279.93 9.24 30 v
Solar PV FlatDistPV 2016 4644.52 30 v
Solar PV FlatDistPV 2045 1885.54 11.48 30 v
Solar PV SlopedDistPV 2016 6762.96 30 v
Solar PV SlopedDistPV 2045 1890.26 9.33 30 v
Storage HydrogenElectrolyzer 2045 769.37 46.93 19.92 40
Storage HydrogenFuelCell 2045 583.68 26.9 0.02 26
Storage HydrogenLiquifier 2045 47.46 0 0.01 30
Storage Battery Bulk 2045 408.40 17.73 15
Storage Battery Conting 2045 470.79 17.73 15
Storage Battery Reg 2045 533.19 17.73 15
Storage DistBattery 2045 408.40 17.73 15
Wind O↵shoreWind 2045 3128.11 42.3 30 v
Wind OnshoreWind 2011 2417.55 30 v
Wind OnshoreWind 2012 2417.55 30 v
Wind OnshoreWind 2045 1522.49 37.23 30 v

Notes : Cost assumptions are derived from Hawaiian Electric Company’s Power Supply Improvement
Plan from December 2016. IC and CC stand for Internal Combustion and Combined Cycle, respectively.
CIP CT, Waiau, Airport DSG, Schofield, IC Barge, IC MCBH, Kalaeloa are all multi-fuel and will auto-
matically convert to biodiesel in 2045. The letter ”v” on renewable generation indicates variable capacity
factors determined from weather data at selected site locations on the sample days.
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Table 3: Fuel Costs

Fuel Year Unit cost ($/MMBtu)
Biodiesel 2045 33.95
Coal 2045 4.18
Diesel 2045 24.31
LNG 2045 14.89
LSFO 2045 18.88
Motor Diesel 2045 36.33
Motor Gasoline 2045 33.43
Pellet-Biomass 2045 14.53

Table 4: Summary of Scenarios

Scenario Characteristic Number Constituents

Interhour demand flexibility 3 Pessimistic, Moderate, Optimistic

Costs 2 HECO PSIP 2016, HECO PSIP 2045

Overall electricity demand 3 Elasticity = 0.1, 0.5, 2.0

Electric vehicle share 3 0.5%, 50%, 100%

Policy Objective 3 Fossil, 100% Clean, Unconstrained.

Baseline demand 2 Projected 2045, Actual 2007

Pricing 2 Flat pricing, RTP

Notes : We solved for all combinations of characteristics, which amounts to (3 ⇥ 2 ⇥
⇥3 ⇥ 3 ⇥ 3 ⇥ 2 ⇥ 2 = 648) scenarios. Assumptions in boldface indicates the baseline.
Under flat pricing, interhour substitution has no influence on the outcome. Electricity
expenditure in the baseline scenario is used for welfare and cost comparisons.
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Table 5: Main Results - Total Surplus and Value of RTP

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Policy
Objec-
tive

Cost Demand
Flexibility

Pricing Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

� TS
(%)

� TS
RTP
(%)

Flat 90 930 0 37.2
Optimistic

Dynamic 82 952 21 39.7
2.5

Flat 90 930 0 37.1
2016

Pessimistic
Dynamic 94 939 41 39.3

2.2

Fossil Flat 158 870 0 Baseline
Optimistic

Dynamic 148 884 87 2.3
2.3

Flat 158 870 0 Baseline
2045

Pessimistic
Dynamic 150 869 81 1.5

1.5

Flat 150 876 0 4.2
Optimistic

Dynamic 158 1,006 153 23.6
19.4

Flat 147 878 0 4.2
100%

2016
Pessimistic

Dynamic 189 984 197 15.6
11.4

Clean Flat 105 914 0 30.4
Optimistic

Dynamic 123 1,062 133 44.1
13.7

Flat 105 914 0 30.4
2045

Pessimistic
Dynamic 119 1,054 125 39.1

8.7

Notes : This table reports a subset of results for the baseline set of scenarios with an overall
demand elasticity equal ✓ = 0.1, a vehicle fleet that is 50 percent EV, and a projected 2045 load
profile. � TS gives total surplus measured as the di↵erence from the baseline scenario (2045
Fossil with flat pricing) measured as a percent of baseline expenditure, and includes changes in
consumer surplus, producer surplus, and EV charging costs. � TS RTP gives the value of RTP
versus flat pricing as a percent of baseline expenditure holding all else the same. A full set of
results that includes additional outcome metrics and an unconstrained (surplus maximizing)
policy objective is given in the Online Appendix, together with full results from other sets of
assumptions (✓ 2 {0.5, 2} di↵erent EV shares, and an actual 2007/2008 load profile).

27

Page 28 of 73



Table 6: Main Results - Distribution of Total Surplus

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Policy
Objec-
tive

Cost Demand
Flexibility

Pricing � CS
(%.)

� PS
(%)

� CS
Highflex
(%)

� CS
Midflex
(%)

� CS
Inflex
(%)

Flat 48.3 -11.1 37.2 37.2 37.2
Optimistic

Dynamic 53 -13.3 44.4 42.6 42.4
Flat 44.3 -7.2 37.2 37.2 37.2

2016
Pessimistic

Dynamic 45.5 -6.2 41.7 36.8 34.7
Fossil Flat —————— B a s e l i n e ——————

Optimistic
Dynamic 12.5 -10.2 8.9 8 7

Flat —————— B a s e l i n e ——————
2045

Pessimistic
Dynamic 9.3 -7.8 9.5 7.5 5.4

Flat 7.6 -3.4 4.3 4.3 4.3
Optimistic

Dynamic 27.5 -4 35.8 20.5 9.1
Flat 2.3 1.9 5.9 5.9 5.9

100%

2016
Pessimistic

Dynamic 14 1.6 35.5 21.7 5.2
Clean Flat 37.2 -6.8 28.9 28.9 28.9

Optimistic
Dynamic 52.2 -8.1 51.7 42 35.9

Flat 34.6 -4.2 28.8 28.8 28.8
2045

Pessimistic
Dynamic 44.2 -5.1 54.3 44.4 34.3

Notes : This table breaks out total surplus ( TS) from Table 5 into its components, consumer
surplus (CS) and producer surplus (PS). The table also reports changes for di↵erent demand
types with more and less flexibility. Note that CS includes EV charging costs, which is why CS
can di↵er from any weighted sum of flexibility types.
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Figure 4: Surplus gain from real time pricing under di↵erent policy, cost and demand flexibility scenarios.
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The graph shows the di↵erence in total economic surplus with real-time marginal-cost pricing and total surplus when prices are flat, holding all else
the same. Total surplus change is reported as a percentage of baseline (flat price) expenditure on electricity. The graph depicts all scenarios with an
overall demand elasticity of 0.1; results for larger overall elasticities are shown in the appendix. The top row shows the value of RTP under current
costs; the bottom row shows the value of RTP under projected future costs (2045). The horizontal axis shows the policy scenario: fossil, 100% clean or
unconstrained (maximum surplus, regardless of source). The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the
diamonds show the 2007 load profile, and the error bars show how results di↵er with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of RTP.
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Figure 5: Cost of 100 percent renewable energy system under di↵erent policy, cost and demand flexibility scenarios.
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The graph shows the di↵erence in total economic surplus with a 100 percent renewable system versus the baseline scenario given on the horizontal axis,
holding all else the same. Total surplus change is reported as a percentage of baseline expenditure on electricity. The graph depicts all scenarios with
an overall demand elasticity of 0.1; results for larger overall elasticities are shown in the appendix. The top row shows the value of RTP under current
costs; the bottom row shows the value of RTP under projected future costs (2045). The horizontal axis shows the policy scenario: fossil, 100% clean or
unconstrained (maximum surplus, regardless of source). The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the
diamonds show the 2007 load profile, and the error bars show how results di↵er with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of RTP.
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Under 2045 technology and fuel costs, the least-cost share of renewables always exceeds 80

percent and costs rise little as the share increases above the least-cost share. Electric vehicles

reduce the overall cost curve by about 5-10 percentage points under flat pricing and a bit more

under RTP, since EV charging is a particularly flexible load. Note that the baseline changes

with more EVs, as we add the required demand for charging them to the 2045 technology/fuel

costs, flat-price, and predominantly fossil scenario.

Increasing the overall elasticity of demand from 0.1 to 2 has a more dramatic impact. Under

elastic demand (✓ = 2), a 100% clean system is optimal under RTP and astonishingly welfare

improving—more than 100% of baseline expenditure. (Note that we must change the scale

of the graphs to illustrate high-elasticity cases in the bottom panels of Figure 6). The cost

is slightly lower with 100% electric vehicles instead of 50% as displayed. Real-time pricing is

also considerably more valuable with more elastic demand, equal 62% of baseline expenditure,

holding all else the same. While an elasticity of 2 is quite optimistic, an overall elasticity of 0.1

is likely very conservative. These two scenarios bound the most plausible range.

Another clear implication of these results is that while interhour flexibility is valuable, there

are strong diminishing returns to the share of load that is highly flexible. The optimistic

flexibility scenarios assume nearly six times as much highly-flexible demand (� = 10) than the

pessimistic scenarios, but less-than-double the benefits of RTP.

6.2 Equilibrium Prices and Quantities

We show the full distributions of equilibrium quantities and prices for a few scenarios in

Figure 7. These graphs show striking di↵erences between the influence of RTP in fossil and

high-renewable systems. Where RTP slightly reduces the spread of quantities in the fossil

system, it greatly increases the spread of quantities in high-renewable systems and (future)

unconstrained systems. In the high-renewable case, peak quantity under RTP roughly doubles

compared to the fossil and flat-price scenarios. Price variation under RTP also di↵ers, with

more variation in high-renewable cases relative to the fossil scenario, in which prices hardly

vary except for critical peaks. The high-renewable cases also show lower and less variable

prices during high-quantity equilibria.26These are times when renewable energy is plentiful and

there may be curtailment and zero or near-zero prices. In the Online Appendix we report the

share of hours in each scenario with marginal cost less than 5 cents or 1 cent per kilowatt

hour. Although RTP reduces this share relative to flat-pricing scenarios, it remains quite high,

even in optimized RTP scenarios with ample flexibility. Thus, RTP is especially valuable in

high-renewable systems because encourages considerably greater power consumption when it is

unusually plentiful and cheap, not just reduced consumption when power is especially scarce.

26Note that the critical peaks in the fossil scenario tend to occur at lower quantities, which happen to occur
during scheduled or unscheduled power plant outages.
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Figure 6: The social cost of clean power relative to a fossil future with flat pricing.
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Notes: Each line shows the social cost—the loss in total economic surplus (PS + CS)—as the share of clean electricity rises above
the surplus-maximizing share, holding all else the same. Social cost is measured as a percent of expenditure (excluding externalities)
in the baseline scenario, which is a predominantly fossil system with flat pricing. Graphs on the left assume current (2016) costs,
while graphs on the right assume projected future (2045) costs. A comparison of the top two rows shows the influence of electric
vehicles (EV), contrasting the 2016 fleet share of 0.5 percent EV with 100 percent EV. In the top two rows, the overall demand
elasticity is fixed at the benchmark ✓ = 0.1. A comparison of the bottom two rows shows the influence of a more elastic demand
(✓ = 2 versus ✓ = 0.1), while holding the EV share fixed at 50 percent. Note the larger scale on bottom two rows (-15 to 100%
instead of 45 to 100%). In all graphs, black lines show the social cost with flat prices, the dark-green line shows the social cost with
RTP and pessimistic interhour substitutability, and the light-green line shows the social cost with RTP and optimistic interhour
substitutability.
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The scenarios depicted in Figure 7 show 50% EV, 2045 technology and fuel costs, pessimistic

flexibility, and an overall demand elasticity of 0.1. When demand is more elastic, flexibility

is more optimistic, and/or there more EVs, the contrast between fossil and high-renewable

systems with RTP are similar but larger in magnitude. 27

Figure 7: Distributions of prices and quantities.
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Notes: These graphs show quantity and price distributions under flat pricing and RTP assuming 2045 projected
costs, an overall demand elasticity of 0.1, and pessimistic demand flexibility. The top row shows histograms
of hourly quantities (in MWh) with dashed lines to indicate the mean quantity for each scenario (RTP or flat
prices). Box plots in the bottom row show the distributions of hourly RTP prices (in $/MWh) and grey lines
to indicate the corresponding flat-price scenario.

6.3 Chronological Operation

In Figure 8 we show hourly generation, storage, and use profiles for three sample days in a

few scenarios. Fossil, 100% clean, and unconstrained models are compared, each with flat prices

and RTP. The sample days include a day with a moderately low weight (0.05), a high weight

(0.09), and the most-di�cult-to-serve day with the lowest weight (0.02). The scenarios depicted

27For this figure and some others, it is useful to keep in mind that the weights on the high-price days are
considerably smaller than those on the low-price days (shown in Figure 1); the plotted distributions take
these weights into account. More detail on the frequency of especially low-priced times are shown in the
online appendix.
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are for 2045 technology and fuel costs, and pessimistic demand flexibility.28 The “supply source”

panels show the scale and timing of solar and wind generation, when battery discharging occurs,

thermal generation using diesel, biodiesel, low-sulfur fuel oil (LSFO), and fuel cell generation

from hydrogen. The “demand use” panels show consumption (all flexibilities), battery charging,

and production of hydrogen (electrolysis and liquefaction). Nominal demand, derived from

benchmark sample days in 2007 and 2008, are shown using a black dotted line, labelled as Base

load. Nominal demand is pinned to the average generation cost during these benchmark years.

Since these benchmark years were high-priced (about 18 cents per kWh due to the high cost of

oil fuel), even the flat-price scenarios show higher demand than the benchmark. The “supply

source” graphs also show the benchmark price (depicted with black dashed lines) and final price

(red dashed lines), with the scale depicted on the right.

A number of interesting lessons can be gleaned from careful study of these chronological

graphs. A few highlights include:

• Fossil systems (with no additional renewable energy) use stationary batteries in 2045 to

help satisfy evening peak demand, but most batteries are eliminated under RTP, because

electric vehicle charging and flexible demand can be strategically timed to avoid this cost.

Prices vary little, however, even in RTP pricing systems. Note, however, that the di�cult

day pertains to high-renewable scenarios; the most-di�cult day for the fossil system is

not shown.

• The unconstrained and 100% clean systems look similar, dominated by wind and solar

generation, with battery discharging shifting excess midday supply to nighttime and early

morning. The main di↵erence is on the di�cult-to-serve day, which is satisfied by LSFO

and diesel in the unconstrained scenario and biodiesel in the 100% clean case. The 100%

clean scenario also makes use of hydrogen for long-run storage.

• With flat prices, both unconstrained and 100% clean systems have significant curtailment

of solar on the high-weight day (the middle day shown). In the RTP scenarios, the price

falls to zero or nearly so on this day, and extra demand is shifted into these hours.29

• There is noticeably less hydrogen production under RTP than under flat prices in the

100% clean case.

28We show only three days in order to make the graphs large enough to interpret. For high-resolution depictions
of all sample days for all 648 scenarios, see the interactive website at: http://www2.hawaii.edu/~mjrobert/
power_production/, which allows users to select desired scenarios from a series of drop-down menus, and to
download PDF files of each one.

29With CES demand, quantity can grow arbitrarily high as prices approach zero, but when demand is highly
inelastic, there is little welfare benefit from much of this extra demand.
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• Although prices vary widely in the high-renewable RTP scenarios, they vary much more

between days than within days. In both unconstrained and 100% clean scenarios (bottom

and middle rows, respectively), the high-renewable days (which are common) have zero

or negative prices all day long, not just during the sunny times. On the most-di�cult-

to-serve day, prices are high (about 35 cents per kWh) all day long, not just during peak

demand. The pattern emerges because ample battery installations do not near capacity

constraints on most days. On some days, however, there can be spikes in prices around

the evening peak (see the first day in the unconstrained model with RTP, for example).

One factor not evident in the graphs or tables concerns the cost and prices associated with

provision of reverses. While adequate reserves and equilibrium prices for them are a part of the

model, in most scenarios they turn out to be an uninteresting one. There is generally enough

storage and/or demand response to provide adequate regulating reserves at zero marginal cost.

In other words, regulating reserves e↵ectively become a co-product to storage and demand

shifting.

In the Online Appendix we present chronological profiles for all thirteen sample days and

explain some of the finer details of how the model resolves start/stop, minimum operating

levels, and ramping constraints of thermal generators.

6.4 Generation Mix

Aggregating across sample days, Figure 9 shows how generation and consumption portfolios

di↵er in RTP versus flat-price environments. In the fossil scenario, we see that RTP nearly

eliminates use of batteries overall, not just in the sample days depicted above. In unconstrained

and high-renewable systems, RTP increases solar and wind shares of the generation mix while

reducing battery use, and there is considerably less use of hydrogen for long-term storage. In all

settings, there are also benefits to RTP from better timing of EV charging that are not directly

apparent in the generation and consumption shares. There is also greater overall electricity use

in the RTP scenarios (10-15% greater in 100% Clean scenarios) not directly apparent in the

shares. These results are clear in Table 5.
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Figure 8: Hourly production and consumption profiles for several scenarios with pessimistic interhour demand flexibility.
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These graphs show hourly load balance (supply and demand components) for three sample days under a the scenarios with the pessimistic interhour
substitutability of demand, an inelastic overall demand elasticity for electricity equal to 0.1, a baseline demand profile projected for 2045, a vehicle fleet
with 50% electric vehicles, and costs of production as projected for 2045 in HECO’s Power Supply and Improvement Plan. The first two rows show
fossil-fuel systems with flat and dynamic, real-time pricing; the next two rows show 100% clean systems with flat pricing and RTP; and the last two rows
show the welfare-maximizing systems (resource unconstrained) with flat pricing and RTP. All 13 sample days are shown in the Appendix.
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Figure 9: Production and consumption shares by sources with pessimistic interhour demand
flexibility.
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The scenario presented assumes the pessimistic interhour substitutability of demand, an inelastic overall demand
elasticity for electricity equal to 0.1, a baseline demand profile projected for 2045, a vehicle fleet with 50% electric
vehicles, and costs of production as projected for 2045 in HECO’s Power Supply and Improvement Plan.

6.5 Gains for Different Demand Types

While RTP benefits flexible demand types more than inflexible demand types, even inflexible

demand types normally benefit from RTP, and in some cases, nearly as much as flexible demand

types. These results are depicted in Table 6. For example, in the 100% clean, pessimistic flexi-

bility scenario for 2045 with RTP, high-flex customers gain 25.5% (54.3 - 28.8%) in consumers’

surplus relative to flat pricing while inflexible customers gain 5.5% (34.3 - 28.8%). Under op-

timistic flexibility, high-flex customers gain 22.8% while inflexible customers gain 7.0%. Under
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2016 technology/cost scenarios and pessimistic flexibility, inflexible types can gain be slightly

worse o↵ under RTP versus flat pricing (a loss of 0.7%), but gain under optimistic flexibility.

Many if not most customers probably have both flexible and inflexible demands, as flexibility

is likely connected to the specific end use more than customer preferences. Flexibility will also

depend on adoption of smart devices that enable automated response, which will likely be

heterogeneous. Di↵erences in outcomes across customers will also depend on heterogeneity in

baseline load profiles, which we do not consider. Most residential customers, for example, likely

have little midday demand and high morning and evening demand, which would be somewhat

more costly to serve. The fact that there tends to be more variation in marginal cost between

days than within days, however, would appear to mitigate inequity stemming from this kind of

demand heterogeneity. Thus, there may less di↵erence in impacts across customers than some

might otherwise presume, but those with more potential for demand flexibility (e.g., commercial

customers) may see greater benefits than customers less willing or less able to harness demand

flexibility.

6.6 Robustness

In the appendix, we report results from scenarios that are like those reported in table 5,

except we change individual assumptions that were held constant across all scenarios in the main

results. The assumptions we change include: (1) if 2007 loads are used instead of projected loads

for 2045 (actual 2007 showed more variable demand within and across days than projections

for 2045); (2) if 0.05 or 100% of the vehicle fleet is electric instead of 50%; (3) if the overall

demand elasticity is 0.5 or 2 instead of 0.1. We also replicate figures 4 and 5 for di↵erent overall

demand elasticities. These additional results show that the value of RTP increases modestly

if demand varies more within and between days and increases considerably in high-renewable

scenarios with a higher overall demand elasticity.

7 Discussion

7.1 Summary of Findings

We developed an integrated model of weather-dependent power supply, nonlinear coincident

weather-dependent demand, storage, and reserves to find chronological dynamic equilibria in

an electricity market under real-time marginal-cost pricing (RTP), and compare solutions to

those with regulated flat retail prices that are currently predominant in practice. We use this

model to show how much more valuable RTP is in high-renewable environments as compared

to conventional fossil systems. We find that RTP is at least five times more valuable in high-

renewable environments as compared to a conventional fossil system, and could easily exceed

an order of magnitude more valuable depending on the nature of demand and costs of storage.

We also find that a large share of clean energy is currently optimal, that a very high-renewable
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(>85%) will soon be optimal, and that the optimal renewable share of power is considerably

higher (> 95%) with RTP than it is with flat pricing, even excluding pollution externalities.

The optimized power system with a large share of clean energy uses batteries and/or de-

mand response to cost-e↵ectively manage day-night and other short-term variations in supply.

The larger challenge with intermittent renewables concerns seasonality or prolonged shortfalls

in power generation. The optimized system manages these variations by striking a balance be-

tween overbuilding generation capacity for normal and resource-rich times and, during resource-

lean times, using high-cost biofuels in traditional power plants while increasing prices to limit

demand. In many scenarios, Switch also selects a hydrogen storage option, wherein excess

generation produced in resource-rich times is used to make hydrogen from water, which is then

liquefied and stored for fuel cell generation during resource-lean times. The scale of this tech-

nology is modest in RTP scenarios, as demand response is a more economic substitute, but

more substantial in high-renewable scenarios with flat pricing.30

Unlike current fossil-based power systems wherein the main benefit of RTP comes from

limiting critical peak demand, the benefits of RTP in high-renewable systems are multifaceted,

lowering the cost of day-night balance, helping to limit generation capacity by staving o↵

demand during resource-lean times (not necessarily peak demand), while allowing greater so-

cial benefit from low prices and higher electricity use during resource-rich times. The last

phenomenon—new, flexible uses of low-cost power—is a key source of value from RTP in high-

renewable systems, especially if overall demand is more elastic. Although existing empirical

studies suggest that demand is inelastic, we speculate that some of the inelasticity stems from

the fact that historical retail pricing tends to be flat. It is hard to know how demand could

evolve, especially if aided by automation and induced technical change, in an environment with

long spells of free or nearly-free energy. With more elastic demand, the potential upside benefits

from clean renewables could be extraordinary in conjunction with RTP. With elastic demand,

the optimal system under projected future technology costs, is 100% clean under RTP, and has

net social benefits relative to a conventional system that exceed 100% of expenditure in that

system.

Even with highly inelastic demand, our findings on the feasibility and cost of a zero-emission

power system may appear optimistic. Some of the findings derive from assuming more potential

flexibility on the demand side than other researchers have been willing to consider, especially

air conditioning demand. For example, a recent report by the National Renewable Energy

Laboratory (NREL) assessed demand response potential for a large number of end uses and

30The model also includes a pumped-water hydropower option that would make use of an existing reservoir,
but this is not economic in any of our scenarios. The model does not include consideration of nuclear power
because it is unlikely to be economic and does not appear to be under serious consideration in the State of
Hawai’i. These and other technologies might be viable components of an optimal generation portfolio in other
places.
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customer types (Mai, Sun, Jadun, Murphy, Logan, Muratori and Nelson 2020). While that

study assumed that a greater share of HVAC demand was shiftable, it assumed that such

demand could only be shifted a maximum of one hour earlier or later in the day. A recent report

by the National Academy of Sciences that considers alternative decarbonization pathways rests

on the NREL report to guide its assumptions about demand side flexibility (Pacala, Cunli↵,

Deane-Ryan, Haggerty, Hendrickson, Jenkins, Johnson, Lieuwen, Loftness, Miller, Pizer, Rai,

Rightor, Gallagher, Takeuchi, Tierney and Wilcox 2021). In contrast, we assume shiftability

anytime within each 24 hour period (a 12-23 hour shift, depending on the hour of day). The

di↵erence amounts to whether simple thermostat adjustments would be made, which would

have limited benefits but be essentially costless, or whether demand-side investments thermal

storage or other shifting technologies are employed. These technologies would not be costless,

but likely involve greater costs than are implicit in our interhour elasticities of substitution.

They are, however, likely much cheaper than batteries, with greater durability, less energy

loss per storage cycle, and potential co-benefits, like improved energy e�ciency if installed in

conjunction with HVAC upgrades, like heat pump cooling and heating.

Still, even in findings for flat-pricing scenarios, clean energy is a↵ordable. Some may wonder

if the viability of low-cost, high-penetration renewable energy reflects Hawai’i’s unique charac-

teristics: the state is rich in wind and solar resources, but must otherwise import fossil fuels a

great distance, making fossil fuels expensive relative to clean alternatives. Hawai’i also has mild

seasonal variation in solar capacity, and that variation happens to be correlated with seasonal

variation in demand. The unconstrained options also rule out additional installations of new

coal-fired power plants. Note, however, that the technology cost assumptions used in this analy-

sis are fairly conservative, especially in light of rapid technological advancement in recent years.

By some estimates, such as Bloomberg New Energy Finance and Lazard,31 current renewable

energy and battery technology costs already rival Hawaiian Electric Company’s projections for

2045 that we use in this analysis (Lazard 2021). Currently, renewable technology costs are far

less, and fossil fuel costs far greater, than those assumed for 2016.

Hawai’i’s extreme isolation also creates significant challenges for intermittent solar and wind

energy. Oahu is a geographically small place, and therefore has less diversity in solar, wind,

and demand flexibility than might be employed in larger regions to smooth di↵erences be-

tween supply and demand. Even connecting the individual islands would be cost prohibitive

(Woodford 2011). Continental regions, in contrast, have much more scale and connectivity, such

that transmission provides another method of managing intermittency, as well as for transfer-

ring power from areas rich in renewable resources to those with less. While this fact suggests

that demand response may be less valuable in continental regions as compared to Hawai’i, re-

31See https://about.bnef.com/blog/ and
https://www.lazard.com/perspective/levelized-cost-of-energy-levelized-cost-of-storage-and-levelized-cost-of-hydrogen/
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cent research suggests that shifting of heating and cooling loads with thermal storage might

do more than transmission as a mechanism for flattening existing demand variability across

the continental United States (Roberts, Zhang, Yuan, Jones and Fripp 2021). Thus, while the

value of demand-side flexibility may di↵er for larger interconnected regions, its role is likely

substantial, and may in some ways complement the benefits of transmission.

While critical high-cost times are rare, low or zero marginal cost times are much more preva-

lent in all high-renewable scenarios. For example, in the baseline set of clean and unconstrained

scenarios with RTP, approximately half of all hours in 2045 have marginal cost less than 5 cents

per kWh while 15 to 20% have marginal costs less than 1 cent per kWh. With flat pricing, these

shares are considerably higher (top panel of Figure S1 in the online appendix). The reason is

clear: among the portfolio of options for managing intermittency, one is to simply overbuild

wind and solar such that a reasonably su�cient quantity is available during lean times, which

implies a surplus of energy during less-lean times. Because wind and solar are so cheap, all

solutions lean heavily on this option, even those with plentiful demand-side flexibility. Much

of the additional value from RTP stems from making productive use of energy produced dur-

ing these sunny and windy days. We expect this pattern to be the case generally. Indeed,

most areas likely have more seasonal variation in demand and renewable energy supply than

does Hawai’i, which should lead to more overbuilding to satisfy prolonged lean periods, even

more excess supply during resource-rich times, and thus even greater value from RTP. Because

short-duration battery storage and interhour demand flexibility cannot smooth such long-run

imbalances, gains from RTP also tend to be more sensitive to the overall demand elasticity

than to interhour flexibility (Figure 6), a result that is likely true in general.

7.2 Modeled Versus Actual Outcomes

Some may wonder if the finely resolved long-run competitive equilibrium prices realistically

depict what would occur in actual practice. In practice, there will times with too little gener-

ation and storage capital relative to the long-run competitive equilibrium, which would cause

higher price spikes and greater volatility. At other times there will too much capital, which

would cause prices and price variability to be too low. Capacity markets or other requirements

and allowances for investment from public utilities commissions will factor into this overall level

of investment. Regardless, RTP will bring about more e�cient pricing conditional on the given

portfolio of assets at any given time and ought to help facilitate appropriate ongoing capital

adjustments. Given the way these decisions have been made historically, however, it seems

at least as likely that excess investment will occur as under-investment (Bushnell, Flagg and

Mansur 2017). It could be di�cult to entice appropriate levels of demand-side investments if

customers believe that excess supply-side investment will quell price variability.

Another reason prices can exceed marginal cost is market power, which may be a↵ected by
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growth of intermittent renewables. Market power will change with changes in the nature and

geography of generation, and the resulting times and locations that are most constrained and

thus susceptible to strategic withholding from wholesale markets. In the near term, there may

be too little storage and flexible demand, which could exacerbate market power during times of

reduced renewable energy supply, like when sun sets (Jha and Leslie 2021). Longer term, storage

ought to ameliorate market power, so long as ownership is not too concentrated among those

who also own substantial generation capacity (Acemoglu, Kakhbod and Ozdaglar 2017, Fabra

and Llobet 2019). Because tax credits for renewable energy can be extended to battery storage

only if paired with and charged by renewable energy installations, this may be a concern in some

areas (Anderson, Elgqvist and Settle 2018). Like storage, improved transmission pairs well with

renewables and would also reduce market power. Careful consideration of market power would

depend on the nature of market rules and would be complicated greatly by storage.32Regardless,

RTP ought to do a lot to abate market power both in conventional and in high-renewable

systems that are vulnerable to it, and could otherwise simplify some aspects of regulation.

A practical challenge with RTP in Hawai’i is that there is no market to set real-time prices.

The system is managed by an investor-owned utility, Hawaiian Electric Company, that owns the

transmission and distribution network and most conventional thermal generation. The PUC

typically requires all new generation, including renewables, be purchased from independent via

purchase power agreements with fixed or fuel-based prices to limit financing costs. The utility’s

allowed revenue is set using performance-based regulation and customer tari↵s are regulated by

the PUC. Time-of-use rates have been introduced, but there is no current appetite for RTP, even

though current marginal costs are essentially flat, like those in our conventional fossil scenarios.33

Since there is no market, real-time prices would need to be set by a regulatory mechanism, such

as the marginal cost given by automatic generation control system software that optimize

operations in real-time.34Such software would need to be modernized to account for storage,

32With few exceptions, areas with wholesale markets also have capacity markets that ensure su�cient “firm”
capacity is installed to meet peak demand and limit market power (Spees, Newell and Pfeifenberger 2013).
If such markets lead to excess investment, real-time prices, even if otherwise competitive, may be too
low to recover all capital expenses. Rules for what qualifies as “firm” capacity, however, vary widely
across wholesale markets, and it is unclear whether any of them ever incentivized an appropriate level
and type of generation resources, even before substantial integration of renewable energy and storage
(Bushnell et al. 2017). ERCOT, the only exception in the United States, is an “energy only” mar-
ket that lacks a capacity market and may be more susceptible to price spikes. Texas is also see-
ing record growth of storage investment to arbitrage price spikes https://www.utilitydive.com/news/
texas-drives-record-growth-in-us-energy-storage-market-in-q2-despite-chall/632268/.

33See https://www.hawaiianelectric.com/products-and-services/save-energy-and-money/
time-of-use-program/time-of-use-rate-history for a history of time-of-use rates, which are scheduled
to be made “opt out” sometime in 2023. These rates far exceed marginal costs at all times, but create price
di↵erentials large enough to potentially induce significant demand response by residential users over time,
but are too high relative to commercial baseline rates to be adopted by large-scale customers.

34Most all power systems are operated in real-time using software that minimizes the cost of balancing supply and
demand at each moment given fuel and other costs and operating constraints of available generation resources,
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supply, and demand, all of which would be linked to weather forecasts and other factors. Other

vertically integrated utilities, such as Georgia Power, have implemented RTP without a market,

with prices tied to the utility’s day-ahead or hour-ahead forecasts of this measure of marginal

cost. In other contexts, with well-functioning wholesale markets and location-specific marginal

costs, RTP may simply require a sensible way to allocate any necessary fixed charges, such as the

inspired suggestion by Borenstein, Fowlie and Sallee (2021) to make such charges progressive.

Relatedly, although Switch is one of only a few models that simultaneously considers invest-

ment and real-time operations, chronological decisions do not explicitly consider uncertainty

about future demand and weather-linked supply, as actual wholesale markets would. Instead,

operations decisions, including plant-specific start/stop decisions and storage adjustments, as-

sume perfect foresight within each day, and account for uncertainty by requiring su�cient up-

and down-reserves. The solution, however, finds marginal prices for reserves are zero across

all days and scenarios, and real-time prices typically show more variation between days than

within them. These results suggest that a more refined treatment of uncertainty using, say,

stochastic dynamic programming, would not yield substantially di↵erent results. If these re-

sults generalize to other settings, as we suspect they will, they also suggest that market power

will mainly be a concern on the toughest-to-serve days and/or when inventory of stored energy

reaches critical lows.

7.3 Overcoming Resistance to Real-Time Pricing

Despite its potential benefits for consumers and its usefulness for a↵ordably integrating

intermittent clean power, there tends to be institutional resistance to real-time pricing tar-

i↵s. Part of the resistance likely comes from both utility customers and state public utility

commissions that may fear extreme spikes in prices, like those that occasionally arise in Texas

(Departo 2019, Cramton 2021). Some of the resistance also comes from the mixed success of

past e↵orts to implement RTP; while some utilities, like Georgia Power, demonstrated remark-

able early success, many other studies show weak participation and limited demand response

to variable prices (Barbose et al. 2004, Goldman et al. 2006).

At the same time, current regulatory practice often rewards (implicitly) high-cost, central-

ized solutions that require more capital expenditure, some of which might be avoided with

e↵ective demand-side management. Such investments may include centralized storage, peaking

power plant investments, and transmission and distribution upgrades. RTP, if both buying and

selling from customers is permitted, e↵ectively opens the system to free entry.35 Major stake-

subject to any reserve requirements or other constraints. The software calculates the cost of the last kilowatt
hour in each moment, and this marginal cost is called system lambda as it is e↵ectively the multiplier on the
balance constraint in the optimization problem that underpins automatic generation control. In a vertically-
integrated system like Oahu’s, there would presumably need to be some regulatory oversight of this control
software and how future forecasts are developed.

35While it is beyond the scope of analysis here, location-specific RTP, down to the node or even circuit level,
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holders that would benefit from extensive use of RTP mainly include large-scale commercial

customers, who may be unaware of the potential, and would-be providers of devices that could

enable demand response, like thermal storage. In the long run, much of the benefits would

be dispersed to all customers via competition. At the same time, RTP would generally enable

lower-cost competitive outcomes that would diminish rents to more established stakeholders

that include incumbent providers of energy, grid services, and transmission and distribution

services. It is di�cult, however, for disparate consumers and potential entrants to parse the de-

tails of regulatory options, much less coordinate and e↵ectively engage in regulatory processes

like large incumbent stakeholders do. And many disparate consumers would presumably be

easy to dissuade from supporting or participating in RTP with accounts of $9,000 per MWh

prices faced by Griddy and other RTP customers in Texas during the Winter of 2021.

There are well-known solutions to the problem of extreme price spikes. It would be easy

to hedge such extremes, as Griddy was apparently about to do just before extreme cold struck

Texas in the winter of 2021, hobbling much of the gas supply network and many gas-fired

power plants, ultimately leading to rolling blackouts and crippling high prices (Borenstein 2007,

Cramton 2021). Alternatively, and more simply, reasonable price caps could be placed on RTP

tari↵s. Our model typically indicates a peak price of $500 MWh or less on the hardest-to-serve

day when demand is highly inelastic. A price cap at this level or slightly higher would allow

enough price variation to engender the needed investments and demand responses and would

pose little meaningful risk to customers given how rarely such hours would occur. Sensible

price caps would have the added benefit of limiting market power during constrained periods

of time that might tempt those with temporary market power from withholding energy and

engineering even higher price spikes (Borenstein et al. 2002a, Woerman 2018).

There may be other ways to implement demand response in a manner that captures most

of its potential benefits. Since optimal prices tend to vary more between days than within

days, time-of-use rates would likely need to be paired with critical “energy drought” pricing on

especially di�cult-to-serve days, and “discount days” for the considerably more frequent days

when there is a substantial surplus of energy and marginal cost approaches zero. Regulators,

investors, and the general public may find the simplicity and transparency of such a pricing

mechanism more appealing. It is not yet clear how e�cient such second-best pricing mechanisms

would be in high-renewable settings, but it would be worthwhile investigating if they turn out

to be more institutionally viable than RTP.

might save distribution system upgrades, which are normally financed with rate-of-return regulation, even in
places with wholesale markets. This possibility may create growing tension between the interests of utilities
and customers, as distributed resources—rooftop solar, batteries, thermal storage and other forms of flexible
demand—become increasingly common and a↵ordable.
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Akar, Sertaç, Philipp Beiter, Wesley Cole, David Feldman, Parthiv Kurup, Eric

Lantz, Robert Margolis, Debo Oladosu, Tyler Stehly, Gregory Rhodes et al.,

“2020 annual technology baseline (ATB) cost and performance data for electricity gen-

eration technologies,” Technical Report, National Renewable Energy Laboratory-Data

(NREL-DATA), Golden, CO (United . . . 2020.

Anderson, Katherine H, Emma M Elgqvist, and Donald E Settle, “Federal Tax

Incentives for Energy Storage Systems,” Technical Report, National Renewable Energy

Lab.(NREL), Golden, CO (United States) 2018.

Barbose, Galen, Charles Goldman, and Bernie Neenan, “A survey of utility experi-

ence with real time pricing,” Technical Report, Lawrence Berkeley National Lab.(LBNL),

Berkeley, CA (United States) 2004.

Benthem, Arthur Van, Kenneth Gillingham, and James Sweeney, “Learning-by-doing

and the optimal solar policy in California,” The Energy Journal, 2008, 29 (3).

Blonz, Joshua A, “Making the Best of the Second-Best: Welfare Consequences of Time-

Varying Electricity Prices,” Technical Report Working Paper W275, Energy Institute,

Haas School of Business, University of California at Berkeley 2016.

Bollinger, Bryan K and Wesley R Hartmann, “Information vs. Automation and impli-

cations for dynamic pricing,” Management Science, 2020, 66 (1), 290–314.

Borenstein, Severin, “The long-run e�ciency of real-time electricity pricing,” The Energy

Journal, 2005, 26 (3), 93–116.

, “Customer risk from real-time retail electricity pricing: Bill volatility and hedgability,”

The Energy Journal, 2007, 28 (2).

and James B Bushnell, “Do Two Electricity Pricing Wrongs Make a Right? Cost

Recovery, Externalities, and E�ciency,” American Economic Journal Economic Policy,

2022.

and Stephen Holland, “On the e�ciency of competitive electricity markets with time-

invariant retail prices,” RAND Journal of Economics, 2005, 36 (3), 469–494.

45

Page 46 of 73



, James B Bushnell, and Frank A Wolak, “Measuring market ine�ciencies in Cali-

fornia’s restructured wholesale electricity market,” American Economic Review, 2002, 92

(5), 1376–1405.

, Meredith Fowlie, and James Sallee, “Designing electricity rates for an equitable

energy transition,” Energy Institute at Haas working paper, 2021, 314.

, Michael Jaske, and Arthur Rosenfeld, “Dynamic pricing, advanced metering, and

demand response in electricity markets,” Journal of the American Chemical Society, 2002,

128 (12), 4136–45.
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1 Nested CES Demand System

Each pseudo-customer possessing a di↵erent interhour elasticity is assumed to maximize util-
ity U(x1, x2, . . . , xh, . . . , x24, Y |�, ✓,↵, �1, �2, . . . , �h, . . . , �24) subject to their budget constraint,P24

h=1 phxh + Y = M , where xh is electricity consumed in hour h, Y represents expenditure on
all other goods with a constant price equal to 1 (i.e., money); ↵ and �h are share parameters
that weight all other goods relative to electricity and electricity in each hour relative to other
other hours; and M is total income. M is calibrated by dividing total baseline electricity ex-
penditure of a particular pseudo-customer in a day by the share of aggregate income spent on
electricity. The ↵ and �h parameters are calibrated from the statewide share of income spent
on electricity expenditure, and by baseline load shares allocated to each pseudo-customer.

Following Rutherford (2008), suppose there exists a unit expenditure function or an ideal
price index (the minimum expenditure required to achieve baseline utility) in the “calibrated
share form,” a measure relative to baseline values. The expenditure function is:

e(ph, p(�h), p̄h, ¯p(�h), Ū) = Ū

0

@↵

✓
pY
p̄Y

◆1�✓

+ (1� ↵)

 
nX

h=1

�h

✓
ph
p̄h

◆1��
! 1�✓

1��

1

A

1
1�✓

(1)

where Ū , p̄Y , p̄h indicate baseline values for respective parameters, ↵ is the calibrated share
given the baseline value of Ȳ = M �

P
h x̄hp̄h, ↵ = Ȳ /M , and �h are calibrated shares of

each day’s electricity consumed by the pseudo-customer in each hour at the associated baseline
prices p̄h.

Consumer welfare is measured by the indirect money metric utility function. That is, we
can write indirect utility in terms of the income required at baseline prices to achieve the level
of utility achievable at prices p and income M , as:

V (ph, p̄�h,M) =
M

e(ph, p(�h), p̄h, p̄�h, Ū)
(2)

From Roy’s Identity, Marshallian demand is given by:

xh(e(ph, p�h, p̄h, p̄�h),M) = � @V/@ph
@V/@M

=
M

e

@e

@ph

The closed form solution of demand functions then can be written as a function of calibrated
share parameters derived from a baseline load profile and the share of income spent on electricity
at baseline prices.

xh(p|p̄, �, �,M)

p̄
=

M

0

@↵ + (1� ↵)

 
24X

j=1

�j

✓
pj
p̄j

◆1��
! 1�✓

1��

1

A
�1

⇥ (1� ↵)

 
24X

j=1

�j

✓
pj
p̄j

◆1��
!��✓

1��

⇥ �h

✓
p̄h
ph

◆�

(3)

Total demand is given by the sum of demand from each pseudo customer, as indicated in
the main paper.
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2 Mathematical Formulation of Switch

Here we provide a brief overview of the core equations used by Switch. A more complete
documentation of the software can be found in Johnston, Henriquez-Auba, Maluenda and Fripp
(2019).

Switch 2.0 has a modular architecture that reflects the modularity of actual power systems.
Most power system operators follow rules that maintain an adequate supply of power, and
most individual devices are not concerned with the operation of other devices. Similarly, core
modules in Switch define spatially and temporally resolved balancing constraints for energy and
reserves, and an overall social cost. Separate modules represent components such as generators,
batteries or transmission links. These modules interact with the overall optimization model by
adding terms to the shared energy and reserve balances and the overall cost expression. They
can also define decision variables and constraints to govern operation of each technology. This
approach makes it possible for users to add, remove or alter modules, representing di↵erent
system components and formulations without unexpected interactions with other parts of the
model. Consequently, Switch 2.0 can be readily customized to address the needs of a given
study or region.

In the treatment below, we have omitted elements that define regional load zones and
power transfers between these zones, since our model of Oahu has only a single zone. However,
transmission constraints would be of critical importance for applications to larger geographical
areas that are connected, such as the continental United States. We have similarly omitted
definitions for multiple investment periods, since we use a single stage for this study.

2.1 Objective Function

The objective function minimizes the net present value of all investment and operation costs:

min
X

cf2Cfixed

cf +
X

t2T

wyear
t

X

cv2Cvar

cvt (4)

Function (4) sums over sets of fixed costs Cfixed and variable costs Cvar. Each fixed cost com-
ponent cf 2 Cfixed is a model object, specified in units of dollars per year. This object may
be a variable, parameter or expression (calculation based on other components). Variable cost
components cv are indexed by timepoint (t) among all study timepoints (T ) and specified in
units of dollars per hour. The term cvt is the element with index t from component cv, i.e.,
a variable cost that occurs during timepoint t. The weight factor wyear

t scales costs from a
sampled timepoint to an annualized value. For this study, we select one 24 hour day from each
month of the year, so that the time points t specify actual hours. The weights multiply the
individual days by about 30 such that the accounting reflects costs over an entire year.

Plug-in modules add components to the fixed and variable cost sets to represent each cost
that they introduce. For example, the generator-building module adds the total annual fixed
cost for all generators and batteries (capital repayment and fixed operation and maintenance)
to the Cfixed set, and the generator-dispatch module adds variable costs (fuel and variable O&M)
for these facilities to Cvar. The specification is generic so that models of di↵erent granularity
may be considered depending on the needs of a particular problem and computational expense.
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2.2 Operational Constraints

Power Balance: Specifies that power injections and withdrawals must balance during each time
point. Injections are mainly output from power plants and battery storage, and withdrawals are
mainly customer loads and battery charging. As with the objective function, plug-in modules
add model objects to P inject and Pwithdraw to show the amount of power injected or withdrawn
by each system component during each timepoint. For this study, production components were
defined by the standard generation modules, and withdrawal components were defined by the
standard electric vehicle model and a purpose-built responsive demand module.

X

pi2P inject

pit =
X

pw2Pwithdraw

pwt , 8t 2 T (5)

Dispatch: Power generation from a source (e.g., a power plant) must fall below its committed
(turned on) capacity Wg,t during time point t multiplied by a capacity factor ⌘g,t, that may
vary with exogenous factors like solar radiation or wind speed.

Pg,t  ⌘g,tWg, 8g 2 G, 8t 2 T (6)

Additional constraints further limit operation:

Wg,t  Kg, 8g 2 G, 8t 2 T (7)

dmin
g Wg,t  Pg,t, 8g 2 G, 8t 2 T (8)

Equation 7 constrains the commitment choice to fall below the installed capacity Kg (possibly
multiple identical units); equation 8 limits dispatch by a minimum-load constraint that applies
to many power plants.

Minimum up and down times : The amount of capacity started up (Up,t) or shut down (Vp,t)
during each hour in each generation project is calculated via

Wg,t �Wg,t�1 = Ug,t � Vg,t, 8g 2 G, 8t 2 T (9)

Additional constraints require that all capacity that was started up during an uptime look
back window (⌧̂ug , defined for each project technology) is still online, and that all capacity that
was shutdown during the downtime look back window (⌧̂dg ) remains uncommitted.

Wg,t �
tX

t0=t�⌧̂ug

Ug,t0 , 8g 2 G, 8t 2 T (10)

Wg,t  KG
g �

tX

t0=t�⌧̂dg

Vg,t0 , 8g 2 G, 8t 2 T (11)

The variable Ug,t is also used to determine startup costs for each plant (not shown).
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3 Supplementary Results

3.1 Frequency of Especially Low Marginal Cost

The graphs in Figure S6 show the share of hours with marginal cost less than 1 cent and 5
cents per kWh ($10/MWh and $50/MWh) across the range of scenarios. The top panel shows
scenarios with an overall demand elasticity ✓ = 0.1 and the bottom panel shows ✓ = 0.5.
Because this share is not much influenced by the degree of interhour flexibility, the share of
EVs, or the baseline demand profile (actual 2007 or projected 2045), all of these variations are
shown with the same dot type.

Figure S1: Share of hours with marginal cost less than 1 cent and 5 cents per kWh.
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3.2 Chronological Production and Consumption Profiles

The following graphs in Figure S2 show chronological production and consumption profiles
for all 13 sample days, selected to span a maximally diverse set of possible wind, solar, and
demand possibilities. The main paper shows only three of these days from these baseline
scenarios. Careful inspection of these graphs reveals how Switch balances various constraints
to achieve general optimization. Profiles for other scenarios can be accessed from the online
website. Here we elaborate on some of these details.

The fossil scenarios show a mostly conventional and contemporary system with pre-existing
renewable energy. Variation in net demand (demand minus renewable supply, mostly solar) is
partly balanced from ramping existing thermal power plants that use low-sulfur fuel oil (LSFO).
In time, however, batteries will be a more economical way to serve peak loads, at least under flat
pricing. Batteries are typically charged midday when renewable supply is ample and demand is
somewhat below peak. RTP benefits this conventional system by allowing peak demands to be
shaved, some of which comes from shifting EV charging to lower-cost times. As a result, RTP
eliminates use of batteries. The days look remarkably similar, however, which is emblematic
of conventional systems, wherein system design is governed mainly by peak demand; in Hawaii
demand does not vary much across days due to the relatively mild climate.

The 100% clean and unconstrained scenarios appear strikingly di↵erent even at first glance
due to the very large role of solar generation. Wind generation (in light blue) is also prevalent,
but is relatively resource constrained on Oahu, except for o↵-shore resources. The model never
selects o↵-shore wind, however, due to its high cost. All 100% clean and unconstrained scenarios
also employ substantial use of batteries, but visibly less under RTP. The 100% clean system
with flat prices also makes ample use of hydrogen, and to a lesser degree in other scenarios.

More subtle di↵erences between the scenarios come from comparison of the relatively con-
strained days, especially 4/10 (the fifth day from the left) and 11/22 (the second day from the
right), the later of which was the 13th “most-di�cult-to-serve” day added after the initial 12
were selected from k-means clustering. These two days, which have frequency weights of 0.06
and 0.02, respectively, employ the use of traditional thermal power plants due to low supply of
wind and sun. In the unconstrained scenarios, a conventional power plant using LSFO operates
all day on both days, due to the minimum operating and ramping constraints of the plants. On
11/22, a second peaking diesel power plant operates in the unconstrained scenario and burns
biodiesel in the 100% clean scenarios. Interestingly, however, no thermal power plant operates
on 4/10 in the 100% clean scenarios, with demand balance achieved by a combination of greater
renewable capacity, hydrogen-powered fuel cell, plus higher prices in the case of RTP to stave
o↵ demand. On this day, prices turn out higher on 11/4 than on 11/22 in the clean-RTP case,
but not in the unconstrained case, owing mainly to the fact that no thermal plant operates. If it
were to operate, its minimum operating level would drive prices down to a point that would not
be economic given the high startup costs, especially with expensive biodiesel. In larger regions
operating at considerably greater scale, such start-stop constraints would not be binding and
we might see some limited use of biofuel on days like 4/10. With flat prices, the clean scenarios
must employ additional power from hydrogen in a fuel-cell plant on both di�cult days, since
demand cannot be staved with higher prices.

Except for these di�cult low-sun and low-wind days, it is generally most economic to simply
use renewables and batteries, although the unconstrained model with flat prices will use a
conventional plant with LSFO to a limited extent on other days.
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It is also interesting to compare days that are less constrained. Consider, for example, how
prices di↵er between the 100% clean and unconstrained RTP scenarios on the first two sample
days, 1/12 and 1/19. On these days, prices are actually lower in the 100% clean scenario than
the unconstrained case. This occurs because the 100% clean scenario has more over-building of
renewables to achieve adequate supply on the di�cult days, which makes for more abundance
and lower prices on other days. Thus, there are compensating benefits associated with the extra
cost of meeting supply on tough-to-serve days, but these are only realized with RTP. This is
a key reason why the cost of increasing the share of clean energy above the least-cost share is
relatively inexpensive with RTP.

Finally, we note the evident demand reshaping on the right-side panels of Figure S2. This
reshaping generally shows considerable growth in demand during supply-rich mid-day times
and moderate reductions during early morning and evening times. One interpretation of this
kind of shifting would be marked growth of air conditioning paired with thermal storage such
that benefits of mid-day cooling could be transferred to evening, nighttime, and early morning
use. Some of the more extreme shifts derive from extended periods of very low prices where the
CES demand system might imply larger demand response than might be realized in practice.
Note, however, that there is relatively little surplus associated with these shifts given how
low prices and marginal utility are when prices are very near zero. These shifts and benefits
associated with shifting can be larger in scenarios with a larger overall demand elasticity, but
such benefits are only speculative at present–they would require new flexible sources of demand.
These scenarios can be viewed on the interactive website developed for this paper.

These comparisons indicate some subtle tradeo↵s involved with co-optimizing intermittent
renewables, short- and long-term storage, and traditional thermal generation, either with bio-
fuels or conventional fossil fuels. The general lesson that we draw from these comparisons is
that large shares of clean wind and solar power will soon be least cost regardless of the policy
environment, and that while some days will be challenging, there are a number of ways to
achieve balance on such days, all of which are made considerably less costly with RTP. A key
benefit of RTP is the way it encourages more overbuilding of renewables to better serve resource
constrained days, because it creates additional benefits on less-resource-constrained days under
RTP; under flat pricing the extra power would simply be curtailed. This potential value of
RTP is likely to be far greater in regions with more seasonality than Hawai’i.
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Figure S2: Hourly production and consumption profiles for several scenarios with moderate interhour demand flexibility.
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The scenarios presented above assume the moderate scenario for interhour substitutability of demand, an inelastic overall demand elasticity for electricity
equal to 0.1, a baseline demand profile projected for 2045, a vehicle fleet with 50% electric vehicles, and costs of production as projected for 2045 in
HECO’s Power Supply and Improvement Plan. The first two rows show fossil-fuel systems with flat and dynamic, real-time pricing; the next two rows
show 100% clean systems with flat pricing and RTP; and the last two rows show the welfare-maximizing systems (resource unconstrained) with flat
pricing and RTP.
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Figure S3: Surplus gain from real time pricing under di↵erent policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 0.5.
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The graph shows the di↵erence in total economic surplus with real-time marginal-cost pricing and total surplus when prices are flat, holding all else
the same. Total surplus change is reported as a percentage of baseline (flat price) expenditure on electricity. The graph depicts all scenarios with an
overall demand elasticity of 0.5 instead of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario: fossil, 100% clean or
unconstrained (maximum surplus, regardless of source). The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the
diamonds show the 2007 load profile, and the error bars show how results di↵er with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Figure S4: Cost of 100 percent renewable energy system relative to fossil and unconstrained systems under di↵erent cost and
demand flexibility scenarios when the overall demand elasticity equals 0.5.
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The graph shows the di↵erence in total economic surplus with a 100 percent renewable system versus the baseline scenario given on the horizontal axis,
holding all else the same. Total surplus change is reported as a percentage of baseline expenditure on electricity. The graph depicts all scenarios with
an overall demand elasticity of 0.5 instead of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario: fossil, 100% clean or
unconstrained (maximum surplus, regardless of source). The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the
diamonds show the 2007 load profile, and the error bars show how results di↵er with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Figure S5: Surplus gain from real time pricing under di↵erent policy, cost and demand flexibility scenarios when the overall demand
elasticity equals 2.
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The graph shows the di↵erence in total economic surplus with real-time marginal-cost pricing and total surplus when prices are flat, holding all else
the same. Total surplus change is reported as a percentage of baseline (flat price) expenditure on electricity. The graph depicts all scenarios with an
overall demand elasticity of 2 instead of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario: fossil, 100% Clean or
unconstrained (maximum surplus, regardless of source). The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the
diamonds show the 2007 load profile, and the error bars show how results di↵er with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Figure S6: Cost of 100 percent renewable energy system under di↵erent policy, cost and demand flexibility scenarios when the
overall demand elasticity equals 2.
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Load Profile=2007 Optimistic Moderate Pessimistic EV level (0.5%−100%)

The graph shows the di↵erence in total economic surplus with a 100 percent renewable system versus the baseline scenario given on the horizontal axis,
holding all else the same. Total surplus change is reported as a percentage of baseline expenditure on electricity. The graph depicts all scenarios with
an overall demand elasticity of 2 instead of 0.1 as reported in the main paper. The top row shows the value of variable pricing under current costs; the
bottom row shows the value of variable pricing under projected future costs (2045). The horizontal axis shows the policy scenario: fossil, 100% Clean or
unconstrained (maximum surplus, regardless of source). The bars show the baseline case with 50 percent electric vehicle fleet and 2045 load profile, the
diamonds show the 2007 load profile, and the error bars show how results di↵er with 0.5 percent and 100 percent electric vehicles–more electric vehicles
always increase the value of variable pricing.
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Table S1: Main Results: Comparison of prices, quantities, and surplus with flat and RTP pricing.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-
tive

Cost Demand
Flexibility

Pricing Clean
(%)

Price
($/MWh)

Mean Q
(MWh/hr)

SD of
Price

($/MWh)

� CS
(%)

� EV
Cost
(%)

� PS
(%)

� TS
(%)

� CS
Highflex
(%)

� CS
Midflex
(%)

� CS
Inflex
(%)

� TS
RTP
(%)

Flat 16 90 930 0 48.3 -54.9 -11.1 37.2 37.2 37.2 37.2
Optimistic

Dynamic 16 82 952 21 53.0 -69.5 -13.3 39.7 44.4 42.6 42.4
2.5

Flat 16 90 930 0 44.3 -51.3 -7.2 37.1 37.2 37.2 37.220
16

Pessimistic
Dynamic 16 94 939 41 45.5 -62.2 -6.2 39.3 41.7 36.8 34.7

2.2

Flat 17 158 870 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 17 148 884 87 12.5 -23.8 -10.2 2.3 8.9 8.0 7.0
2.3

Flat 17 158 870 0 —————————— B a s e l i n e ——————————

F
os
si
l

20
45

Pessimistic
Dynamic 17 150 869 81 9.3 -20.5 -7.8 1.5 9.5 7.5 5.4

1.5

Flat 100 150 876 0 7.6 -10.9 -3.4 4.2 4.3 4.3 4.3
Optimistic

Dynamic 100 158 1,006 153 27.5 -52.3 -4.0 23.6 35.8 20.5 9.1
19.4

Flat 100 147 878 0 2.3 -6.4 1.9 4.2 5.9 5.9 5.920
16

Pessimistic
Dynamic 100 189 984 197 14.0 -47.1 1.6 15.6 35.5 21.7 5.2

11.4

Flat 100 105 914 0 37.2 -45.5 -6.8 30.4 28.9 28.9 28.9
Optimistic

Dynamic 100 123 1,062 133 52.2 -68.9 -8.1 44.1 51.7 42.0 35.9
13.7

Flat 100 105 914 0 34.6 -42.2 -4.2 30.4 28.8 28.8 28.8

10
0%

C
le
an

20
45

Pessimistic
Dynamic 100 119 1,054 125 44.2 -68.1 -5.1 39.1 54.3 44.4 34.3

8.7

Flat 39 81 941 0 51.9 -60.1 -13.5 38.3 42.4 42.4 42.4
Optimistic

Dynamic 57 86 958 21 52.0 -73.3 -10.0 42.0 43.8 41.6 41.2
3.7

Flat 40 81 936 0 46.2 -47.7 -7.8 38.3 42.3 42.3 42.320
16

Pessimistic
Dynamic 50 79 961 36 52.7 -71.9 -12.1 40.6 52.2 46.2 44.0

2.3

Flat 90 101 918 0 38.5 -46.4 -3.5 35.0 31.0 31.0 31.0
Optimistic

Dynamic 97 116 1,041 127 54.0 -71.2 -8.1 45.8 52.5 43.9 37.8
10.8

Flat 89 96 923 0 39.0 -45.1 -3.9 35.1 33.7 33.7 33.7U
n
co
n
st
ra
in
ed

20
45

Pessimistic
Dynamic 97 118 1,021 124 46.2 -67.4 -5.0 41.1 53.2 45.4 36.5

6.0

Notes : This is a more complete version of Table ?? in the main paper. In all scenarios shown here, the overall demand elasticity (✓) equals 0.1, the baseline load profile is that
projected for 2045, and electric vehicles are assumed to comprise 50% of the fleet. Each scenario (row in the table) is defined by assumptions delineated in the first four columns.
The first column (Policy Objective) indicates exogenous constraints determined by policy: Fossil prohibits any new renewable energy, but is otherwise least cost; 100% Clean reflects
the intended outcome of the State’s Renewable Portfolio Standard, and Unconstrained maximizes welfare without constraints on the generation mix. The second column indicates
whether current costs (2016) or the present value of future costs projected for 2045 from HECO’s Power Supply and Improvement Plan are assumed. The third column indicates
the degree of demand flexibility, as detailed in table 1. The fourth column indicates whether retail prices are flat or RTP. The remaining columns summarize the outcomes of the
conditionally optimized system: average price, average quantity, standard deviation of price, and changes in surpluses from the baseline case (fossil system, future costs, and flat
pricing). All changes in welfare are reported as the percent di↵erence relative to the baseline level of expenditure on electricity. %�EV is the percent change in charging costs
for electric vehicles from the base case. Note that �CS includes changes in EV charging costs. We also examine changes in welfare for di↵erent demand flexibilities, which only
matters for RTP pricing scenarios. The last column reports the social value of RTP holding all else the same. The supplement provides additional results that consider more elastic
demand or more EVs.
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Table S2: Supplementary Results: Surplus changes relative to baseline if actual loads from 2007.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-
tive

Cost Demand
Flexibility

Pricing Clean
(%)

Price
($/MWh)

Mean Q
(MWh/hr)

SD of
Price

($/MWh)

� CS
(%)

� EV
Cost
(%)

� PS
(%)

� TS
(%)

� CS
Highflex
(%)

� CS
Midflex
(%)

� CS
Inflex
(%)

� TS
RTP
(%)

Flat 14 89 1,031 0 52.7 -50.0 -11.8 40.9 57.2 57.2 57.2
Optimistic

Dynamic 14 81 1,057 17 57.9 -60.0 -14.2 43.7 63.8 61.8 61.6
2.8

Flat 14 89 1,031 0 50.4 -44.4 -9.8 40.6 57.2 57.2 57.220
16

Pessimistic
Dynamic 14 85 1,049 41 54.0 -54.3 -11.0 43.0 67.7 62.0 59.7

2.4

Flat 16 185 947 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 15 167 963 34 -0.6 -9.2 3.5 2.9 8.6 6.9 6.6
2.9

Flat 16 185 947 0 —————————— B a s e l i n e ——————————

F
os
si
l

20
45

Pessimistic
Dynamic 15 163 964 56 -2.4 -7.9 4.7 2.3 18.5 13.8 11.3

2.3

Flat 100 150 969 0 9.7 -9.2 -4.5 5.2 20.3 20.3 20.3
Optimistic

Dynamic 100 164 1,112 153 30.9 -45.8 -4.6 26.4 54.4 37.9 25.1
21.2

Flat 100 152 968 0 7.0 -3.2 -1.9 5.1 19.3 19.3 19.320
16

Pessimistic
Dynamic 100 160 1,085 149 20.6 -42.2 -3.6 17.1 57.6 39.4 26.1

12.0

Flat 100 105 1,011 0 41.1 -39.0 -7.2 33.9 47.2 47.2 47.2
Optimistic

Dynamic 100 122 1,177 133 57.5 -59.3 -8.8 48.7 72.5 62.2 55.4
14.8

Flat 100 105 1,011 0 39.2 -34.2 -5.5 33.7 47.2 47.2 47.2

10
0%

C
le
an

20
45

Pessimistic
Dynamic 100 134 1,144 160 48.1 -55.4 -5.1 43.0 74.7 63.8 53.2

9.3

Flat 38 82 1,029 0 53.2 -46.9 -11.1 42.1 61.3 61.3 61.3
Optimistic

Dynamic 60 100 1,047 42 53.8 -63.1 -7.7 46.1 59.6 56.2 55.5
4.0

Flat 38 82 1,039 0 52.0 -44.6 -10.3 41.7 61.2 61.2 61.220
16

Pessimistic
Dynamic 53 85 1,055 49 54.2 -58.7 -9.6 44.6 71.2 62.6 58.6

2.9

Flat 87 93 1,025 0 47.3 -42.4 -8.1 39.2 54.4 54.4 54.4
Optimistic

Dynamic 98 120 1,156 134 58.4 -60.0 -8.1 50.3 72.5 63.4 56.6
11.1

Flat 87 95 1,023 0 47.3 -39.3 -8.5 38.8 53.4 53.4 53.4U
n
co
n
st
ra
in
ed

20
45

Pessimistic
Dynamic 97 121 1,154 146 50.8 -55.3 -5.7 45.0 75.2 65.7 55.8

6.2

Notes : Like table S1, except baseline demand is tied to actual 2007 loads, not projected loads for 2045; actual 2007 load profile is somewhat more variable across the season.
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Table S3: Supplementary Results: Surplus changes relative to baseline if fewer electric vehicles (0.5 percent).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-
tive

Cost Demand
Flexibility

Pricing Clean
(%)

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

� CS
(%.)

� EV
Cost
(%)

� PS
(%)

� TS
(%)

� CS
Highflex
(%)

� CS
Midflex
(%)

� CS
Inflex
(%)

� TS
RTP
(%)

Flat 18 89 930 0 43.3 -51.8 -7.5 35.8 43.3 43.3 43.3
Optimistic

Dynamic 18 98 937 19 36.1 -65.1 1.0 37.2 38.2 36.2 36.0
1.4

Flat 18 90 930 0 43.7 -49.0 -7.8 35.9 43.2 43.2 43.220
16

Pessimistic
Dynamic 17 81 953 40 48.7 -64.0 -12.0 36.7 55.5 50.2 48.2

0.8

Flat 19 161 868 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 19 154 880 21 2.9 -20.3 -1.6 1.3 5.2 3.0 2.8
1.3

Flat 19 161 868 0 —————————— B a s e l i n e ——————————

F
os
si
l

20
45

Pessimistic
Dynamic 19 156 877 52 1.3 -17.4 -0.4 0.9 9.5 3.4 0.8

0.9

Flat 100 149 876 0 3.4 -13.9 0.9 4.3 6.7 6.7 6.7
Optimistic

Dynamic 100 174 1,007 180 21.5 -50.5 -0.5 21.0 40.9 24.9 10.4
16.7

Flat 100 146 879 0 4.1 -2.3 0.2 4.3 8.6 8.6 8.620
16

Pessimistic
Dynamic 100 171 989 165 11.3 -54.7 0.7 12.0 46.6 22.5 7.4

7.7

Flat 100 104 914 0 34.3 -42.2 -4.9 29.4 34.1 34.1 34.1
Optimistic

Dynamic 100 124 1,067 139 47.7 -68.1 -5.8 41.8 59.7 47.3 41.3
12.4

Flat 100 104 914 0 34.7 -39.3 -5.2 29.5 34.2 34.2 34.2

10
0%

C
le
an

20
45

Pessimistic
Dynamic 100 127 1,054 142 41.5 -68.6 -5.2 36.3 66.8 47.7 40.0

6.8

Flat 43 84 937 0 49.9 -57.1 -12.8 37.1 46.7 46.7 46.7
Optimistic

Dynamic 53 81 957 29 48.5 -73.7 -9.7 38.8 50.9 48.6 48.0
1.7

Flat 40 81 935 0 46.5 -43.7 -9.2 37.3 48.9 48.9 48.920
16

Pessimistic
Dynamic 50 90 953 58 43.7 -70.4 -5.5 38.2 57.4 46.7 43.7

0.9

Flat 88 95 924 0 40.7 -46.4 -6.7 34.0 39.6 39.6 39.6
Optimistic

Dynamic 96 102 1,041 100 51.2 -71.1 -7.4 43.7 61.4 53.2 45.9
9.7

Flat 88 96 923 0 41.1 -43.5 -6.9 34.1 39.4 39.4 39.4U
n
co
n
st
ra
in
ed

20
45

Pessimistic
Dynamic 96 111 1,029 108 40.5 -70.3 -1.8 38.7 65.8 51.7 43.1

4.6

Notes : Like table S1 in the main paper, except the share of electric vehicles is 0.5% (the current share of the fleet) instead of 50%.
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Table S4: Supplementary Results: Surplus changes relative to baseline if more electric vehicles (100 percent).

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-
tive

Cost Demand
Flexibility

Pricing Clean
(%)

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

� CS
(%.)

� EV
Cost
(%)

� PS
(%)

� TS
(%)

� CS
Highflex
(%)

� CS
Midflex
(%)

� CS
Inflex
(%)

� TS
RTP
(%)

Flat 14 92 927 0 60.0 -48.8 -25.1 34.9 64.3 64.3 64.3
Optimistic

Dynamic 14 67 957 0 73.3 -60.2 -35.6 37.6 76.5 76.5 76.5
2.7

Flat 14 92 930 0 35.4 -27.4 -0.2 35.3 64.2 64.2 64.220
16

Pessimistic
Dynamic 14 67 957 0 46.4 -36.4 -8.6 37.8 76.4 76.4 76.4

2.5

Flat 15 236 856 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 16 178 860 34 9.0 -13.1 -5.7 3.3 25.3 23.9 23.5
3.3

Flat 16 236 856 0 —————————— B a s e l i n e ——————————

F
os
si
l

20
45

Pessimistic
Dynamic 16 194 861 74 -19.1 11.4 22.3 3.2 17.9 16.6 15.4

3.2

Flat 100 153 873 0 25.8 -21.1 -22.0 3.8 36.1 36.1 36.1
Optimistic

Dynamic 100 163 1,016 157 45.9 -48.5 -22.3 23.6 64.2 50.9 41.7
19.8

Flat 100 149 877 0 -2.0 3.3 6.0 3.9 38.0 38.0 38.020
16

Pessimistic
Dynamic 100 164 989 148 12.6 -26.2 4.6 17.2 65.3 53.2 40.8

13.3

Flat 100 107 912 0 52.4 -43.7 -23.8 28.6 57.5 57.5 57.5
Optimistic

Dynamic 100 119 1,067 125 67.1 -59.2 -25.0 42.1 77.5 69.4 64.4
13.5

Flat 100 107 912 0 25.5 -19.8 3.3 28.8 57.3 57.3 57.3

10
0%

C
le
an

20
45

Pessimistic
Dynamic 100 120 1,052 127 35.5 -35.7 2.6 38.2 78.7 70.2 62.4

9.4

Flat 36 85 930 0 62.0 -47.1 -26.0 36.0 67.5 67.5 67.5
Optimistic

Dynamic 64 89 957 30 67.6 -60.1 -27.2 40.4 71.2 68.7 68.2
4.4

Flat 36 88 932 0 34.3 -21.9 1.7 36.0 66.1 66.1 66.120
16

Pessimistic
Dynamic 50 84 942 55 42.2 -37.6 -2.7 39.5 75.8 72.1 69.6

3.5

Flat 88 95 924 0 58.5 -47.3 -25.6 32.9 63.0 63.0 63.0
Optimistic

Dynamic 98 124 1,052 140 67.7 -59.3 -24.1 43.6 77.0 69.6 64.8
10.7

Flat 88 95 924 0 31.8 -23.5 1.3 33.1 62.8 62.8 62.8U
n
co
n
st
ra
in
ed

20
45

Pessimistic
Dynamic 95 104 1,022 90 39.5 -37.5 0.7 40.3 79.5 73.7 66.6

7.2

Notes : Like table S1 in the main paper, except the share of electric vehicles is 100% instead of 50%.
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Table S5: Supplementary Results: Surplus changes if overall demand elasticity = 0.5

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-
tive

Cost Demand
Flexibility

Pricing Clean
(%)

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

� CS
(%.)

� EV
Cost
(%)

� PS
(%)

� TS
(%)

� CS
Highflex
(%)

� CS
Midflex
(%)

� CS
Inflex
(%)

� TS
RTP
(%)

Flat 12 93 1,218 0 49.3 -49.5 -5.3 44.1 33.9 33.9 33.9
Optimistic

Dynamic 12 82 1,278 10 55.8 -63.5 -8.6 47.2 40.2 39.0 38.9
3.1

Flat 12 94 1,221 0 50.2 -50.4 -6.2 44.1 33.4 33.4 33.420
16

Pessimistic
Dynamic 12 93 1,216 29 48.7 -58.5 -2.2 46.5 40.0 35.1 33.6

2.4

Flat 16 154 928 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 16 148 957 15 9.5 -17.9 -6.7 2.8 4.6 2.9 2.7
2.8

Flat 16 155 925 0 —————————— B a s e l i n e ——————————

F
os
si
l

20
45

Pessimistic
Dynamic 16 151 947 41 7.7 -19.1 -5.3 2.4 7.0 3.0 1.2

2.4

Flat 100 154 926 0 5.7 -4.0 -1.5 4.2 -0.3 -0.3 -0.3
Optimistic

Dynamic 100 158 1,179 117 33.7 -52.0 0.7 34.4 34.6 18.3 8.3
30.2

Flat 100 152 934 0 3.3 -2.3 1.0 4.2 1.6 1.6 1.620
16

Pessimistic
Dynamic 100 165 1,072 125 20.2 -51.6 3.0 23.1 36.0 17.8 5.0

18.9

Flat 100 109 1,108 0 35.8 -38.2 -1.7 34.1 24.8 24.8 24.8
Optimistic

Dynamic 100 108 1,409 90 63.6 -68.3 -2.8 60.8 50.2 41.0 35.9
26.7

Flat 100 109 1,108 0 36.8 -39.3 -2.8 34.0 25.3 25.3 25.3

10
0%

C
le
an

20
45

Pessimistic
Dynamic 100 110 1,361 89 58.5 -71.3 -5.3 53.3 53.1 42.2 35.8

19.3

Flat 32 89 1,221 0 46.6 -39.5 -1.1 45.4 35.9 35.9 35.9
Optimistic

Dynamic 48 82 1,312 11 59.4 -68.9 -9.7 49.8 42.6 40.9 40.6
4.4

Flat 32 89 1,224 0 52.0 -54.6 -6.7 45.4 36.4 36.4 36.420
16

Pessimistic
Dynamic 41 81 1,320 34 59.5 -69.1 -11.3 48.2 49.2 43.2 41.1

2.8

Flat 88 102 1,148 0 44.0 -43.2 -4.1 39.9 28.8 28.8 28.8
Optimistic

Dynamic 100 103 1,415 80 64.6 -69.2 -3.3 61.3 51.0 42.0 37.0
21.4

Flat 88 102 1,144 0 45.0 -44.3 -5.2 39.8 28.9 28.9 28.9U
n
co
n
st
ra
in
ed

20
45

Pessimistic
Dynamic 100 108 1,346 83 58.7 -70.4 -5.1 53.7 53.7 42.6 35.9

13.9

Notes : Like table S1 in the main paper, except the the overall demand elasticity (✓) equals 0.5 instead of 0.1
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Table S6: Supplementary Results: Surplus changes if overall demand elasticity = 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

Policy
Objec-
tive

Cost Demand
Flexibility

Pricing Clean
(%)

Price
($/MWh)

Mean Q
(MWh/hr.)

SD of
Price

($/MWh)

� CS
(%.)

� EV
Cost
(%)

� PS
(%)

� TS
(%)

� CS
Highflex
(%)

� CS
Midflex
(%)

� CS
Inflex
(%)

� TS
RTP
(%)

Flat 8 115 2,061 0 40.4 -22.5 26.9 67.4 25.6 25.6 25.6
Optimistic

Dynamic 7 111 2,222 6 49.9 -46.7 22.4 72.3 28.1 27.5 27.5
4.9

Flat 8 116 2,015 0 41.3 -21.2 26.0 67.4 23.5 23.5 23.520
16

Pessimistic
Dynamic 7 113 2,141 24 47.9 -46.7 23.7 71.6 30.1 25.5 24.6

4.2

Flat 14 162 1,074 0 —————————— B a s e l i n e ——————————
Optimistic

Dynamic 14 158 1,112 12 3.1 -14.5 0.1 3.3 3.3 2.0 1.9
3.3

Flat 14 160 1,083 0 —————————— B a s e l i n e ——————————

F
os
si
l

20
45

Pessimistic
Dynamic 14 159 1,111 39 0.6 -13.6 2.1 2.7 5.7 1.3 -0.2

2.7

Flat 100 160 1,103 0 3.4 -6.4 1.2 4.6 1.5 1.5 1.5
Optimistic

Dynamic 100 160 1,541 59 25.6 -48.0 27.5 53.1 23.5 10.0 5.9
48.5

Flat 100 166 1,171 0 5.3 -6.4 -1.0 4.3 -3.2 -3.2 -3.220
16

Pessimistic
Dynamic 100 160 1,465 79 22.3 -50.9 13.8 36.1 35.5 15.0 6.2

31.8

Flat 100 123 1,816 0 36.5 -31.3 9.8 46.2 21.3 21.3 21.3
Optimistic

Dynamic 100 112 2,757 34 68.0 -57.2 40.9 108.9 35.8 30.9 29.9
62.7

Flat 100 123 1,816 0 36.8 -29.7 9.5 46.3 19.9 19.9 19.9

10
0%

C
le
an

20
45

Pessimistic
Dynamic 100 118 2,574 53 62.8 -54.5 37.0 99.8 40.0 30.5 26.8

53.5

Flat 35 103 2,561 0 62.1 -38.4 12.2 74.2 32.5 32.5 32.5
Optimistic

Dynamic 50 100 2,857 14 74.8 -70.2 15.8 90.6 37.6 34.9 34.3
16.4

Flat 34 98 2,481 0 65.5 -43.6 8.7 74.1 33.7 33.7 33.720
16

Pessimistic
Dynamic 41 104 2,663 39 66.1 -64.6 17.5 83.6 44.2 33.7 30.5

9.5

Flat 81 109 2,499 0 57.0 -40.2 6.4 63.4 29.3 29.3 29.3
Optimistic

Dynamic 100 111 2,771 31 68.2 -57.4 40.8 109.0 35.9 31.1 30.1
45.6

Flat 84 99 2,321 0 49.0 -35.1 14.0 63.0 33.0 33.0 33.0U
n
co
n
st
ra
in
ed

20
45

Pessimistic
Dynamic 99 114 2,601 49 62.6 -55.1 37.4 100.0 40.6 31.0 27.5

37.0

Notes : Like table S1 in the main paper, except the the overall demand elasticity (✓) equals 2 instead of 0.1
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