Optimal and Sustainable Groundwater Extraction

Water Resources, James Roumasset, Christopher Wada, Environment, Working Papers

With the specter of climate change, groundwater scarcity looms as an increasingly critical issue worldwide. Minimizing the adverse effects of scarcity requires optimal as well as sustainable patterns of groundwater management. We review the many sustainable paths for groundwater extraction from a coastal aquifer and show how to find the particular sustainable path that is optimal. In some cases the optimal path converges to the maximum sustainable yield. For sufficiently convex extraction costs, the extraction path converges to an internal steady state above the level of maximum sustainable yield. We describe the challenges facing groundwater managers faced with multiple aquifers, the prospect of using recycled water, and the interdependence with watershed management. The integrated water management thus described results in less water scarcity and higher total welfare gains from groundwater use. The framework also can be applied to climate- change specifications about the frequency, duration, and intensity of precipitation by comparing before and after optimal management. For the case of South Oahu in Hawaii, the prospect of climate change increases the gains of integrated groundwater management.