Water Resources
Groundwater Economics without Equations
In many parts of the world, irrigation and groundwater consumption are largely dependent on groundwater. Minimizing the adverse effects of water scarcity requires optimal as well as sustainable groundwater management. A common recommendation is to limit groundwater extraction to maximum sustainable yield (MSY). Although the optimal welfare-maximizing path of groundwater extraction converges to MSY in […]
Read MoreOptimal Joint Management of Interdependent Resources: Groundwater vs. Kiawe (Prosopis pallida)
Local and global changes continue to influence interactions between groundwater and terrestrial ecosystems. Changes in precipitation, surface water, and land cover can affect the water balance of a given watershed, and thus affect both the quantity and quality of freshwater entering the ground. Groundwater management frameworks often abstract from such interactions. However, in some cases, […]
Read MoreThe Good, Bad, and Ugly of Watershed Management
Efficient management of groundwater resource systems requires careful consideration of relationships — both positive and negative — with the surrounding environment. The removal of and protection against “bad” and “ugly” natural capital such as invasive plants and feral animals and the enhancement of “good” capital (e.g. protective fencing) are often viewed as distinct management problems. […]
Read MoreOptimal groundwater management when recharge is declining: a method for valuing the recharge benefits of watershed conservation
Demand for water will continue to increase as per capita income rises and the population grows, and climate change can exacerbate the problem through changes in precipitation patterns and quantities, evapotranspiration, and land cover—all of which directly or indirectly affect the amount of water that ultimately infiltrates back into groundwater aquifers. We develop a dynamic […]
Read MoreChanging climate conditions threaten groundwater recharge. The potential benefits of conserving it are substantial.
By Kim Burnett and Christopher Wada Results from a recent statistical exercise suggest that by the end of the 21st century, Hawaii will likely see a 5-10% reduction in precipitation during the wet season and a 5% increase during the dry season (Timm and Diaz 2009). Given that approximately 70% of normal precipitation falls during […]
Read MorePublication: Optimal groundwater management when recharge is declining: a method for valuing the recharge benefits of watershed conservation
Demand for water will continue to increase as per capita income rises and the population grows, and climate change can exacerbate the problem through changes in precipitation patterns and quantities, evapotranspiration, and land cover—all of which directly or indirectly affect the amount of water that ultimately infiltrates back into groundwater aquifers. We develop a dynamic […]
Read MoreOrdering Extraction from Multiple Aquifers
Optimal groundwater extraction satisfies the condition that the marginal benefits of water consumption equal the full marginal cost of extraction in each period, including the opportunity cost of future benefits foregone. But how should this well-known condition be generalized when there are multiple aquifers available? We provide an extension of the “Pearce equation” to guide […]
Read MoreIntegrating Demand-Management with Development of Supply-Side Substitutes
Sustaining water availability at current prices in the face of growing demand and declining resources is not possible, and scarcity is further exacerbated by falling recharge levels due to climate change, urbanization, and watershed depreciation. We discuss an integrated approach to water-resource development based on principles of sustainability science. In addition to demand management such […]
Read MoreThe Water-Energy-Food Nexus
By Christopher Wada The water-energy-food nexus is one of the most important and fundamental global environmental issues facing the world today. The US Geological Survey estimates that the United States used 201 billion gallons per day (bgd) of freshwater for thermoelectric power generation and 128 bgd for irrigation in the year 2005. Combined, energy generation […]
Read More